DRAFT

Progrem Struclure:
ano

Compututiconal Complexily

Dennis M, Ritchise

{-h

3"'“"\-“-'""*7" } 96 & . Cﬂm"-‘w,l'tt ',
0f{fn32f
EHYN

ﬁu‘l'-a.h
B fu.v\

SYNOPSIS

The major purpose of this thesis is to show that when tﬁe
language in which computations are describe& is restricted suitebly,
there can be an effective relationship between the complexity of a
program and that of the computation it describes.. We give two
examples.

The first example is that of Loop programs. A Loop progran is
a finite sequencé of instructions for menipulating non-negative, un-
bounded integers stored in registers; the instructions allow incre-
menting registers by unity, setting registers to zero, and moving
the contents of registers. The only control instructions consist of
Loops; there is a kind of Loop for each number n > 1. A Loop with
n = 1 causes the execution of a pqrtion of the program to be repeatad
a predetermined number of times equal to the current contents of a
reglister. Loops may be nested, one insid? another, to any fixed depth;
but Loops with n > } are defined so as to make a Loop of type n+ 1l
equivalent to a variable depth of nesting of Loops of type n.

Each Loop program is assigned an ordinal &, where 0 < & < a?i
which is interded to be the measure of complexity of the program.

The ordiral assigned to a program depends effectively on the progran,
and measures the depth of nesting of the various kinds of Loops.

The idea of Loop programs whose only Loops have n = 1, alfthough
original with ths author, is not unique to him; for exemple Uinsky

[17, po. 212-215] discusses briefly the same idea. Some2 resuiis cof

the theory of such Loop programs have been announced by the author
[22] and published by Meyer and the author [15,16]. The generaliz-
ation with Loop instructions for each n > 1 is believed to be entirely
new,

For each ordinal a, 0 < < a?ﬂ we define a function ﬂ:. The
function is recursive, strictly increasing, and if o > B, ﬁa majorizes

£

£ The definition of ﬂx for finite ordinals ¢ is the same as the o

B
of [15,16] and in general is a modification of the function Wa used
by Robbin [25] for much the same purposes. The major results on Loop
progrems can be stated as follows: for each Loop program‘g assigned
ordinal ¢ there is a number}pf'p effectively derived from‘g such that
’E with inputs xl,...,xn raquires no more than Q&P)(max(xl,...,xn])
steps to halt (Theorem (3.6)}. The notation ﬁép) means fd composed
with itself p times. There are scme programs P assigned ordinel «
which do in fact require fép)(x) steps to halt when given input x
(Theorem (4.7)). A precise definition of the number of steps used
by & program is a by-product of a formalization of Loop programs pre-
gsented in §2.

Furthar resulis on Loop trograms, and muck cof the rest of the
thesis, use heavily the notion of computation-time cissure. A set
of functiors is computation-time closed when both of the following
are true: if a function £ is in the se%, a funciion % is in the set
where b bounds the time required %o compute £ on a Turing machine;
if b is in the set and t bounds the tire requirad to zompute £ on a

Turing machine, £ 13 in the set.

If %a is the class of functions ccmputable by programs assigned
an ordinal less than or equsal to Q, each.ﬂa for ¢ > 2 is computation-
time c¢losed. This allows us to show the following: each class %2 for
a > 2 is closed under limited recursion (Theorem (6.8)); each class
£ for o> 2 can be characterized in arithmetic terms, without refer-

ence to Turing machines or Loop programs (Theorem (&.3)); if a pro-

\fép)

its inputs where B < ¢, then P can be rewritten effectively to yield

gram'g assizned ordinal & requires only steps as g funetion ¢f

a program'g' which is equivalent to P but is assigned ordinal 8. How-
ever, it is in general undecidable whether these hypotheses hold for
P (Theorem (12.8)).

The second example cf a restricted program languzge is that
describing the multivle racursive funations [12,21]. Zach multiple
recursive Tunction can be défined by a formal system of equations which
can effectively be assigned an ordinal O <&, If ﬁa is the class of
functions defined by systzns of equations assigned ordinal ¢, then
. u}‘ R is the class of n-recursive functions; Péter shows [21] that

the l-recursive functions are the same 2s tne primitive recursive

functions. lMuch the sa-z theorsms are proved for @a as for Ea. In

particular, ﬁb is computation-time closed for o > 2 {Theorem (9.3));
iffe R s F(x ,...,xn) can be compubted by a Turing rechine in

()(max{t. ek, }) teps for sonme p waich is effectiively found from

the recursion equations iafining £ (Thzorem (9.1)); f.+a 5 ﬁa (Theorem
(2.3)). These facts alecns show: for a > 2, 31#1 = R_ {Theoren (10.1)).

I. ZINTRODUCTION

§o. Predisting how long a digital computer with a given program

=]

jou

will require b process its inpuls is sometimes impossibly difficult.
This difficulrt, can be partially explained as a manifestation of

the theorew thas there if no effective method for bounding the com-
putation time of a Turing machine by inspection of the mgchine, or
for boundizng the running time of a program written in any languag:

capable of describing all recursive functions.

W

In other worils, any formalism which can describe 2ll terminat-
ing computatisns must d2scribe some nonterminating computations, and

there is no cenerally effactive way of distinguishing the descripiion

oy

of a terminating Srom a nondgternuinating computation. In coniequante,
s

G

~pere can bo ns satisfactory way of relating the complexity of a pro-
gram in a sufficiently powerful language to the complexity of the
operations it carries out. This fact is borne out mast strongly bty

-

the existence of a universal Turing machine: a fixeld progran, actually

quite small, whose behavior is as difficult to predict as that of

Althrouge bounding =2 length of a computaticn ¥y inspection of
g progran T.r e sompaation is in general impossitie, thls problen,
in eommor w. s many o4ther unsolwable problems, has Iinterssting sprclizl
magaz whlh s Le srest=d. On2 approach which has sleided frulstl
% agsentially involves a refusel %o cen-

Sigeyr ~oewueasicng whioon Baxa <59 long. Among the Test mnown examp.as

The same kind of techniques are applied to the hierarchies o.f
Axt [2], Grzegorczyk [9] and Robbin [25]. All of these hierarchies
are shown to be identical to a portion of the .Ea and (?.a hierarchies,
and thus to each other. Specifically, if @a’ a < w, are the Axt
classes, Ea =G'a for @ > 4 (Theorem (10.4)); if E',g, o < w, are the

G
Grzegorczyk classes, £ = £

= S forega<o (Theorem (1C.9)); if-

8a, a< cnw, are a trivial modification of the Robbin classes, .Ca = Sa
for a > 2 (Theorem (10.6)). All of these results are straighiforward
using computation-time closure. Not all are new, however. According
to a personal communication, Axt showed § _ E:g+l fora>a, o = 7
but used a different method. Meyer showed the same thing independently
[14]), using a method like ours. Robbin [25] showed that o t(Jmn Sa is the
same as the class of n-recursive functions; however, he did not sub-
divide the latter class after the manner of our Ra. It should be
mentioned as well that Robbin established the identity of the n-recursive
functions and those functions defined by ordinal recursion over certain
"standard" well-orderings of type w"’n, and also the classes of functions
t.:ccurring in a restricted version of the Kleene subrecursive hierarchy [13].
It seems likely that by closer study equality of these classes could
be establishad at each ordinal.

Chapters II, III, and IV stud:a’ Loop programs and multiple re-
cursive functlions; Chapter V contains three spplicationd of the Lools

developed in the earlier zhapters. The most important of these, as we

have indicatad, is the idea of computation-+ime closurse. An earl
2 '

6 -

sppearance of this idea, without an explicit name, was in R. W. Ritchie
[23], who used it to characterizing classes which form a hierarchy of
elementary functions. Cobham [8] pointed out how each Grzegorcazyk [9]
class could be characterized in terms of the property, after the manner
of our Theorem (6.2), which states ﬁa is precisely the class of functions
computable by a Turing machine in a time bounded by qép) for some p.
As we mentioned, Meyer [14] and also Robbin [25] used the idea as well.
Chapter V, §13, discusses unnested and bounded n-recursion [20,
21] and their relation to the Ea classes thus strengthening some theorem*
of Péter [20,21]. §14 examines the properties of computation-time closed
classes of functions in general; its major results are that each %3 in-
cludes & sequence of classes, all computation-time closed and closed urder
limited recursion and substitutioq}which is densely ordered under set
inclusion (Theorem (14.14)); also, %a includes an infinite sequence of
classes with the same closure properties but pairwise incomparable under
set inclu;ion (Theorem (14.15)). These two results were obtained in
collaboration with Albert R. Meyer. §15 applies Terma (14.13) to ob-
tain a strengihened version of the Super Speed-up theorem of Blum [4].
Among the consequences of our Theorem (15.3) is that there are functions
lying very low in the £a hierarchy whose computation can be sped up,

in Blum's sense, very considerably.

\r"'

of this method are the linear bounded automata of Myhill [18], the
T(n) countable sequences of Hartmanis and Stearns [10], and the pre-
dictably computatle functions of R. W. Ritchie [23]. Each of these
theories considers computations by a Turing machine where there is
a bound on ths tire (or the storage space) allowed for computation.
The bound is imposed from outside simply by restricting attention
to those computatlons which satisfy the bound.

By contrast, the approach of this thesis is to restrict the
language in whizh programs for computations are expressed s¢ that
infinite computations are no longer possible. The first result of
this restriction is that there are indeed effectively calculable

bdunds cn She describable computations, but the important fact is

tha* the existence of these bounds becomss a theorem not a postulatel

apour the computations. It also becomes possible to do for these
special kinds of programs what is impossible for programs in general,
namely to relats %he complexity of a program to t@e complexity of
the calculation it describes; both kinds of complexity, of course,
have to be tak=n in the proper sense.

The m.jsr par’ of *nisg thesis is the study of two examples of
the techniguaz <f restricsing the ianguage in which computations are

L aa s

deserited; tre vramainder consists of several apprecietions of the
tools dsvelop--i in tha first part. Before going into the specifics
of =he Swo 2marnl-s, we 3hould discuss the possible forms of an
answer ko th2 qu:stisn: how does the complexity of a program ralate

L= rompufation descerited by 147

Z,

(W

v

It is not enou

=h

[

I—-

to say merely thal there is an effective means

of going from a program and its input to a number hounding the éime

required to run he program with that input.

gram eve

s
iy

For if we know the pro-

wally does hal%, the effective method is simply the follow-

ing: run the program on the given inpul and measure the time reqguired.

This metnod is

fror owr point o7

is o give the

a program with

view) uninteresting mathema%ically.

know tha%t for inpu% x,

nsh only foolisgh i

n a practical sense but (far worse,

answer in terms of a known function.

A better way

Thus if we had

a single irput parameter, we might be satisfied to

the program would halt within xgkeconds. This

1s the kind of result given for cthe program considered in this Lhesis.

.

On the cther hand, even this kind of answer has many practical

defa~ts.

time.

The trouble is thal many simple programs can run for a long

Conslisr the

ard

Criagemin
s

[¥ 54

i T

[Er -

IR

Y T

s

-

of unlinmited size.

following tseulo-FORTRAN program.

lines mearn that

-

Trage regisse

"~

z

-

is to replace J, N+ 1 times.

rs associat=3d with %he variahlag

This program is an ex*remely

-+, sevaral pages of paper are reguired <-

wnen N

-
(=4
~

’

the known universe i3 fotally

0
2

&

-

5 p— o g

P w b

ne am pagn v S

[P i

.

oS
¢

t —-,—-——7

-

=

/=4

insufficient Lo contain the volume of paper required to write down J.
Thus the function of N which predizts the running time of the program

mist be very larzz. In fa:i, it Is proportional to

This example iniirates that we must accept one of two things: either
that we agree i¢ trea® programs whose running times are so incredibly
long as to proclude any practical application of the results developed,
or thabt wa must rhrow out m2ans of expression, like those in the pro-
gram abova, which prograsmers could hardly do without. In either case
the fact must Le Tazed tha% thars 2can be no direct practical applic-
ations of the thesry. In %he la““er there is another difficulty. When
pfograms are ressriote=i seversly aaough to make every program halt in
a rather sihort btime, the axart m2ans of éxpression allowed to begin to
have a majicr %ff?"{ ot the T7me waguired: it matters a great deal, for
axample, she ey aultiniication is allowed as an elementary operatlzn
or must pa juns in staps Ly means of repeated additisn. In the case
ef real ~ompateras, of 2ourss; this is an important ¢consideration. Bus
we have alrsaly civer ip rzal aprlications by “reating only programs

Wilob na progwwecer oo ld wriig, 33 1 weuld be Impropar to clain

practinal slaniflizanys for fur work meraly because of this featurs.

—
=

/=% .

On th=2 o}her tard, the mathematical significance of the theory
can snly be enhanced whan it is not model-dependent; that is when the
details of the basic definizions have little effect on the thesrems.
Thus, in the prograns deseribed below and studied in the sequel it
would make littie difference if addition or multiplication were added
as elementary speratizcas. We study two major examples of ways of
defining conpuvatlons in such a manner that from s program one can

Zo effectively vo a funchion which bounds the length of the computa-

tion. The *‘ws examples are Loop programs and definition of functions

by mulriple recursion eguations; both involve computations far beyond

the capabilitlies of real computers, but in return give rise to inter-
esting mathema-jral struchures.

Ipcp programs wxenplify the approach 2o the theory of computability
_intru&uced ty iuring [23] in that a Loop program may be regarded as
a set of instructions %o be axecuted by a sort of digital computer.
The Turing appreach s fypified by the use of simplified models of
real compu-ers; it is probably the one most frequently found.

A distinet aizhough aquivalent version of the theory of computa-

bilisy iz the one based on systems of Herbrand-GBdel-Xleene rezursion
equations. s presenied by Kleene in [11] and [12, §S4]. Our second

example., =hzt o7 d20inizion of funcitions by multiple recursisn, bhears
exattly ths sa: relablznehip fo definition by unrestricted recursion
equat.onz as ic Loop programs o programs in general: in each case he

Iorms of - wproszicon are wiakened in such a way that infinite computa-

A\
N

A Loop proéram is a seqﬁénce of instructions for manipulating
non-negative integers stored in registers; each register is capable
of storing an arbitrarily large number, and the number of registers
to which a progrem refers is fixed but unlimited. There are instruc-
tions for moving the contents of registers, for incrementing by unity,
and for setting registers to zero. The flow of contrsl in a Loop
program normally passes from one instruction to the next In sequence,
and the only way of affeciing the normal flow is through the use of
Loops. A Loop is introduced by a LOCP instruction and terminated by
an END instruction. Together these indicate that the section of the
program between the two instructions is to be executed repeatedly
some number of times. There is a variety of LOOP instructionq;one
for each number n > 1; these are written LOOP(1}, L00P(2), etc.

Each kind of LOOP instruction names a register whose contents
control the looping. In the case of the instruction "LOOP(1l) X",
for example, X may be any register name. - This instruction causes the
portion of the program beiween itself and its matching END to be re-
peated a number of times =qual to the contents of X at the time the
LOOP is encountered; subssquent changes to X do not afect the number’
of times tne repetition cccurs. Thus a Loop introduc:d by LOOP(1)
is entirely comparable to the DO loop <f FCRIRAN and io the most usual
cases of the £§£ of Algc: and the THROUIE of MAD. Tha similarity is
not acciden=al, for part of the motivation for the study of Loop pro-

grams is to study the powsr of this cornstruction.

T 6

Loops may contain other Loops; that is, Loops may be nested to
any fixed depth. This is the motivation for the existence of LOOP(n)
instructions for n > 1: the effect of LOOP(n+1) is defined so as to

make such a Loop equivalent to a variable depth of nesting of LOOP(n)

Loops. In particular, the progranm

LOOP(n +1) X
Q

S~

END

where n > 1, X is a register name, and‘g'is a program, eguivalent to

the program

LOOP(n) X
. X

LOéP(n) X
Q

e

END

. X

END

where X is the number in X initially; that is, we have a nest of
100P(n) Loops of depth x. Thers are no constructions in real pro-
gramming languages comparable to LOOP(n) where n > 1.

To each Loop program an ordinal & is gssigned, where 0 < P
The ordinal is derived directly from the depth of nesting <f the
various kinds of Loops: for a program without Loops, a = 0; if a
program is the concatenation of two programs with ordinsls B, r,
the ordinal assigned is a = max{B, v); if progran 9.is assizned

ordinel B, then program P =

L)

1ooP(n +1) X

8
END

for n > 0 and X a register name, ig assigned ¢ = B+ wl, Then, for
example,@;sj program which uses only LOOP(1l) instruciions is as-
signed a finite ordinal equal to the greatest depth of nesting of
Loops in the program. The ordinal assigned to a program is the
measure o complexity of the program.

The notion of computation by Loop program can be formalized;
a by-product of the formalization is a precise definition of the
running time of a given program as a function of its in'puts. The
running tims measures the number of individual irstruction executions
required to complete a program and in a sense the justification for
introducing the somewhat cpaque formelism is to make reasonable the
claim that the complexity of a calculation is measured accurately
by its running time. 5

The basic result on Loop programs is the Bounding Theorem (3.8).
We introduces for each ordinal o, g < wm, a function fa as follows:

ifa=0,

X+l if x<1
x+2 if x>1
If & is a successor ordinal, o= 8+1,

(1)

fa(x) = fﬂ

g

where the notation f(x)(y) means £{f({...f(y)...)); there are x com-
positions of f£. That is, fB+l is defined from fB by iteration. If
o is a limit ordinal, let B be the least ordinal so g = 8+ wn+1,

where n > 0. Then
o
£,(x) = £, .8 (x)

Thus at limit ordinals, fa is defined by diasgonalization over a

certain sequence [fﬁi] of functions where By <8, < .-+ and sup{ai}
Ny

= . The first few i‘a are easy to describer fl(x) = min(1, 2%

£,(x) = 2%,

£,(x) = 2%

The details of the tjefinition of fa are unimportant. For finite
ordinals, o = n, fa is the same as the fn used in [15] and [18];
at limit ordinals, the definition is the same as that used by Robbin
[25] for his functions Wy, vhich play the seme role as our fa. What
is important is that the fa are easily defined and have pleasant
properties: =sach fa is a strictly incressing function, and if @ > B,
fa majorizes {bounds elmcst evaryvwhere) the function fﬂ'
Given the function fo:’ the Bounding Theosrem is: if 2 is a pro-
gram assigned ordinal a, there is a fixed number p, effectively
found from E, such that the running time of 2 with inputs Xysee X

i3 bounded by fép)(ma.*((xl, e ,xn)).

T9

By fixing upon one or more registers for input and a register
for output, we associate with a Loop program a funcfion computed by
that program; the class of functions computable by Loop programs
assigned ordinals less than or equal to & is called £H' It is an
immediste consequence of the Bounding Theorem that every functiion
fe qa has a p so f(xl,...,xn) < qép)(max{xl,...,xn}). Also, for

D . LA cr s s
each 0 < w0 there is a function Ty € Eb 1) %J(x) E'fd(x)i it is im-

mediate that the classes %& form a hierarchy, for it is easily shown
that if a > 8, fa(x) > féc)(x) for each ¢ and almost all x. Already
several of the goals looked for In the study of Loop programs have
been achieved, for it follows first that every program assigned or-
dinal & consumes no more than q;p)(max£xl,...,xn]) steps when given
input xl,...,xn, and second that there are some progrems assigned
ordinel o which actually do require this many steps to halt. Thus
the ordinal assigned a program is a reasonaﬁie measure of the (po-
tential) complexity of the computation degcribed by ths program.

The further study of Loop programs, and in fact much cf the re-

mained of the thesis, is heavily concernsd with the properiy of com-

utation-tirze closure of a set of functions defined as follows: first,
o

when a func=ion is in the set, it zan b2 computed by = Turing machine
in a number of steps which is boundad, a2s a funciion oF the inputs, by
another funzcition in the set; and s=scond, if a bound on the computation
time of a Functicon is in the ss2t, —ne function Iwself s in the ses.
Each class la fora>2is computazion-tgme closed. The first require-

ment is met Ly combining the 3Bouniing Thzorem wiz:h a iamonsiration that

J- 10

~]

g Turing machine can simuléte an arbitrary Loop program while con-
suming a number of steps which is an £2 function of the running
time of the loop prczram; the second by finding a Loop program
vhich simulates a Turing machine calculation carried out for a
given number of sters, and then substituting the known bound on
the length of the ccxmputation into the simulation® progrem.

The computatisn-timgfg%fﬁ; leeds immediately to several
theorems; for example, 1f it is known that a program assigned or-
dinal ¢ actually has a running time bounded by féc) where 2 < B < q,
the program can be sffectively rewritten so it is assiﬂged ordinal B.
It is also shown the each class sb? a > 2, is closed under the oper-
ation of limited rezursion (see Grzegorczyk [9]); that each class %2,
@ > 2, can be characisrized in purely arithmetic terms, without re-
ference either to Turing machines or Loop programs; and that every
primitive recursive function is in Ea for some finite ordinal .

Our second exawple is that of the multiple recursive functions.

These are, for sur Iurposes, precisely those functions definable by

certain formal systz:s of equations. We imagine a language cocntain-

ing symbols for cons=ants, wvariables, funcktion letters, and approprizte

punctuation, combinzi in such a way as to represent definitions of
effectively computa:tls functions. This language is simply a formal
version of the informal dafinition of functions by means of various

PPy

kinds of recursion. including, for exampl=, primitive recursion.

Unlike Kleen= [11, -%] howsver, we place certain restrictions on the

[

form of the sistems of eguatisns. In particular, an eguation defining

a function in térms of already-defined functions must be an in;taﬁce
of one of several schemata, namely those of substitution and n-
recursion for some fixed infeger n > 1. Substitution simply means
obtaining a new function by means of explicit transformation or
composition of other functions. The schema of n-recursion allows
defining a function f(xl,...,xn) in terms of known functicns and
values of £ itself at arguments Zyseeen2y such that the n-tuple
ZysesaZy is lexicographically less than XyreeeaX,. The very form
of the schema of n-recursion is such as to ensure that the set of
equations constituting an instance of n-recursiSh actually does de-
fine a function effectively.

An ordinal o < ap)can be effectively attached to each formal
system of equations satisfying certain purely syntactic requirements.
Letting Ra be the class of functions defineble by systems of equations
with ordinals less than or equal to ¢, another hierarchy results which
is equivalent to the following: ﬁb consists of the closure under_sub-.
gtitution of the constant and identity functions; ﬁa for every ¢t > 0
consists of the closure under substitution of all functions f for which
there exist B and n s0 ¢ = B-%aP.and f is definable by (n +1)-recursion
from functions in RB.

For each n é 1 the functions in U _ R are called n-recursive;
functions whizh are n-recursive for sgézu; constitute “he multiple re-
cursive functions. The notion of multiple recursive function is a ge-
neralization cf that of primitive recursive function, which was intro-

duced expliciily by Gddel [8]; as Péter [21] shows, ‘the l-recursive

T2

functions are identical to the primitive recursive functions. Ackermann
[1] first introduced a 2-recursive (also called double recursive)
function and used it to show that there are effectively computable
functions which are not primitive recursive. Péter [19,20,21]
studied the whole class of multiple recursive functions.

Our examination of the multiple recursive functions uses much
the same metheds as those applied to Loop programs. A Bounding Theorem
for ﬂa establishes that each function in ﬁa is bounded by féﬁ_}__, for
some p which can be found effectively from the formal system o'f%“ "
equations defining the function; on the other hand, fl v € Ra for N\ s
a > 1. Likewise, each class R,a for a > 2 is computation-time closed;
this is established by considering the number sf steps a Turing
machine would require to carry out the evaluation of a function from
its defining equations. Then the theorem S',l o Ra for a > 2 is im-
mediate. For if f ¢ 'ﬁl-&a’ f(xl,...,xn) can be computed on a Turing
machine in no more than fg_fg‘(ma.x{xl yous ,xn]) steps: but the latier
function is in Ra, and so by the computation-time closure of Ra,
fe Ra. The converse argument is identical.

It is here that the concept of computation-time closure is most
important. For to show directly that £1+a = Ra is quite difficult.
In particular, if a < w then to construct an equivalent Loop pragram
with ordinal 1+« directly from the equations defining an R.a function
is quite hard. But given that the f?.a function can be compuiad by a

Turing machire in fg_z; steps, one need only write a program which

computes any function at least as large as fig; and insert it into
a program to simulate the Turing machine.

The same kind of methods are also applicable to three other
hierarchies, those of Grzegorczyk [9], Axt [2], and Robbin [25].
The first two classify the primitive recursive functions and the
third all the multiple recursive functions. The point of interest
i5 that each of these hierarchies is identical to a corresponding
portion of the Ea and ﬂa hierarchies; the classes of functions
eventually become the same.

. The idea of computation-time closure, which plays a major role
in our work, was used by R. W. Ritchie [23] without an explicit name;
its value in characterizing the Grzegorczyk hierarchy was pointed out
by Cobham [6]. Some of the results of Robbin [25] meke implicit use
of the idea.

The usefulness of the notion is that the particular functions
in a computation-time closed set of functions depend merely on the
approximate size of the functions in the set; that is,a function is
in the set if and only if a sufficiently large function is in the set.
For example, suppose & and D are two computation-time closed sets of
functions, end that 9 contains both a function which grows at least
exponentially and a function which majorizes every function of (-

Then it can be shown not orly that D contains properly, out that D
contains a function universal forC: a function U € © so that {or each

f ey 2(x) = U(e,x) for scme e.

The secondary goal of this thesis is to study the application
of computation-time closure and other tools developed in the pursuit
of the primary goal. The most important application, of course, is
the study of the classes £a and ﬁh’ vhich arise from Loop prograﬁs
and multiple recursive functions. There are three others: the ef-
fects of various restrictions on the schema of n-recursion; the ex-
tent to which computation-time closure characterizes a set of functions
(which leads to an impressive refinement of the Qa hierarchy); and the
existence of functions whose computation can be sped up very greatly.

For the most part this thesis is self-contained. The only re-
quirement is a knowledge of the elementary theory of Turing machines:
what they are, and a few of the tricks that they can perform in order
to carry out intuitively simple kinds of operations. Familiarity with
the first few chapters of Davis [7] is more than enough background.

The mathematical notation in the thesis is generally standard.

We use a bar over a letter to indicate a sequence of elements: "in“

", In each case the first subscript in the

is the same as “xl,...,xn
sequence is 1 and the last is the same as that on the tarred letter.
Variables ari constants usually indicabed by small letiers ﬂq&e
alphabet, all range over I, which is the class of non-negative integers;
functions, often small le=tfers f, g, h, are always furn2tlons from Nn
into N for some nj sets of such functions are usually isnoted by capital

script letters. Smell Gresk letiters from the beginning of the alphabet

are used for ordinal numbers. Functional composiftion Is often denoted

P

by juxteposition, especially with one-place functions: fg(x) is the

same as f{g(x)). Finally "<" means strict set theoretic containment.

T (b

v -G T

W

Y ¥

W

IT. LOOP PROGRAMS

§1. - A Loop program is - a finite sequeﬁce of instructions for manip-
ulating non-negative integers stored in registers. There is no limit
to the size of an integer stored in a register, nor.to the number of
registers to which a program may refer; but a given program refers
only to a fixed set of registers. We will use upper case English
letters, sometimes with subscripis, as rggister names, and abbreviate

a sequence X ..,Xn of register names by in' Boldface capitals {iden-

1’
tified by a wiggly underscpre) stand for Leoop programs, and if‘E is a
program Reg (E) is the sel of register names used by ’1:

The instructions of a Loop program are of five types:

(1) x=0

(2) X =Xx+1

(3) X=Y

(4) 100P(n) X where n is a fixed integer, n > 1
(5) END

Here "X" and "Y" may be replaced by any names for registers, and the

o' of "X = O" is to be read "zero”.

(1.1) Definition. The class L of Loop programs is U L,, where O

ranges over ordinals < 091 and where QJ is the smallest class

satisfying

(i) 1Ifax=0, L, is the class of finite sequences of type (1),
(2), and (3) instructions,

(ii) If Pe L‘3 and B <@, then P € L,

T

- W v

(1ii) 1f Q R e, end P is Q concatenated with R,
then E € La’
(iv) 1f g e Iy and O = B+a’ for some n, O <n<uw,

then P € Ly, where P is

LOOP(n+ 1) X
Q

o

END
end X is any register name.

By (1.1.iv), type (4) and (5) instructions occur in pairs, like
parentheses in a well-formed formula, so that the LOOP-END pairs in
& program are unambiguously determined.

The first three types of instruction have the interpretation
suggested by their appearance. "X = 0™ means that the contents of
register X are to be replaced by.zero; "X = X+ 1" means that the
contents of register X are to be incremented by one; "X = Y" means
that the contents of register Y are to be copied into register X,
destroying the old contents of X but leaving Y unchanged. These are
the only instructions which affect the registers.

Instructions of types (1), (2), and (3) are executed sequentially
in the order in which they appear in the program. Type (4) and (5)
instructions affect the normal order by indicating that the execution
of the block of instructions between the LOOP and its matching END

is to be repeated zero or more times.

=l

.-*."5.

The effect of a LOOP(n} instruction is defined by induction on
n. Specifically suppose that 3 is a Loop program, and that x is

stored in register X initially. Then the program

LooP(1) X
P

'

END

means that 3 is to be repeated x times in succession before the
next instruction (if any) after the END is executed. Changes in
the contents of X by £ do not affect the number of times P is exe-

cuted; and if x is zero initislly 2 is not executed at all.
(1.2) Example. The L, program

1oop(1) X
X=X+1
END

doubles the contents of register X.

(1.3} Example. If the initial contents of X and Y are x and y,

the L2 program

LOOP(1) Y
A=0
LOOP(1) X

X=A
A=A+1
END
END

leaves x%y in X, where x*y (pronounced "x monus y")

equals x- y if x >y, O otherwise.

Suppose now that the interpretation of the effect of a
100P{n) - END pair has been given for some n 21, and P is a ILoop
program. Say that the initial contents of register X are x > 1.

Then we interpret the program

100P(n+1) X
P

~

END
as being identical to

10oP(n) X W
LOOI_’(n) X > .

LooP(n) X J

r
END ‘
END p x
END)

where the I00P(n) - END pairs are nested to depth x. If x is zero

initially, the effect is the same as

LOOP(1) X
P

s

END

That is, 2 is not executed at all.

|
(%.4) Example. Suppose we have the I, program

LOOP(2) X
X=X+1
END

and X contains 2. Then the program is equivalent to

LOOP(1) X
1ooP(1} X
X=X+1
END
END

and execution of the program would leave 8 in register
X. MHNotice that the depth of nesting is not affected by

changes to X.

(1.5) Example. If the initial contents of register X are 2,
the Ih? program
LOOP(3) X

X=X+1
END

——

is equivalent to the program

. . LOOP(2) X
LOOP(2) X
X =X +1
END
END

3 [

which is in turn equivalent %o

LOOP(1) X

LOOP(1) X

oor(2) x
Q § X=X+1

END

END

END

Now when the program Q indicated above is executed, the
contents of X will change to 8, by Example (1.4). But
then the next time Q is executed, @ will be equivalent to

LOOP(1) X
: depth 8

100P(1) X

X=X+1

: depth 8

Thus the expansion of a LOOP(n+ 1) - END pair in terms of
LOOP(n) - END depends on the contents of the associated

register at the time the LOOP is encountered.

Finding the number left in register X by the program of (1.5) is

left as an exercise for the persistent reader.

§2. Although it would be possible to characterize formally the
notion of computation by Loop program directly in terms of the in-
formal discussion above, the examples, especially (1.5), should have
convinced the reader that such a characterization would tend to be
quite complicated; more seriously, the individual steps in a com-
putation by a Loop program would in themselves involve considerable
computation. This is undesirable becausg we will be attempting to
measure the computational complexity of a function by the number of
;teps required to compute it. If the individual steps turn out to
be nearly as complicated as the function itself, this measure can
hardly be claimed to have much significance.

We will circumvent this kind of objection by giving a definition
of coﬁputation by Loop program vhose individual steps are quite ele-
mentary. The price that must be paid for this characterization is
that it is no longer clear from the definition that Loop programs be-
have as outlined in §1; thus, a theorem must be proved winich states
in effect that L;op programs operate as desired. The proof, unfor-
tunately, is rather tedious; but given the theorem, we can select
whichever version of computation is more appropriate to the case at
hand.

To begin this alternate characterization, associate with each
program P not only the registers Reg (P), but also a switch and a

pushdown store; the lalter are used by LOOP and END instructions.

ot

(2.1) Definition. A pushdown store is either the single

object (0) or the pair (t,p)} where t is an n-tuple
of integers and p is & pushdown store. If a push-
down store is (0) it is empty. The depth of (0) is
(0), and if p is a pushdown store whose depth is m,

the depth of (t,p) is m+1.

For the remainder of this section, let P be a Loop program

I I

1’72777 %

of instructions vhere e > 0. There is of course no loss of general-

with Reg (P) = [ir] and let P consist of the sequence I
ity in restricting Reg (E) in this way.

(2.2) Definition. A state of P is an (r+ 3)-tuple (J-cr,i,ﬂ,p)
where :~c:j >20for 1 < j<r, where 1 <1i < e+1l, vhere
0<£ <1, and where p is a pushdown store. A state is

initial if i =1 and is final if i = e+1.

(2.3) Definition. If s and s' are states of P with
s = (J-cr,i,E,p) and s' = (i;,i',l',p‘), then s' is the
next state of s under P if i # e+1, X! = X_ except as
provided in (i), (ii), (iii) below, and one of the fol-
lowing holds for some k, n:
(i) If Ii is "Xk'-*-O" thenxl:c=0’ i'=1i+1, £ =2 =0,
and p' = p;

.

I

(i1) 1Ifr I, is "X X, +1" then x! = x+1, it =i+1,

k k Kk
£ =14'=0, and p' = p;

(2.1) Definition. A pushdown store is either the single

object (0) or the pair (t,p) where t is an n-tuple
of integers and p is a pushdown store. If a push-
down store is (0) it is empty. The depth of (O) is
(0), and if p is a pushdown store whose depth is m,

the depth of (t,p) is m+1.

For the remainder of this section, let P be a Loop program

I I

1’727 e

of instructions where e > 0. There is of course no loss of general-

with Reg (P) = [ir] and let P consist of the sequence I
ity in restricting Reg (£) in this way.

(2.2) Definition. A state of P is an (r+ 3)-tuple (:-cr,i,ﬂ,p)
where x‘:I 20forl<j<r, vherel <1i<e+l, where

0<£ <1, and vwhere p is a pushdown store. A state is

initisl if 4 = 1 and is final if i = e+1.

(2.3) Definition. If s and s' are states of P with

s = (J-cr,i,z,p) and s' (:-c]'r,i',ﬂ‘,p'), then s' is the

next state of s under P if i £ e+1, X! = X_ except as

provided in (i), (ii), (iii) below, and one of the fol-

lowing holds for some k, n:

(1) If I, is "X = 0" thenx! =0, i' =i+1,£=4"' =0,
and p' = p;

Fl

{ii) 1Ir I_i is "Xk = xk+1" then xl'(= xk+1, it =i+,

£ =4" =0, and p' = p;

(1ii) If’Ii is "X

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

o = Xy" then x = x,, 1 mditl,

£ =2'=0, and p' = p;

If I, is "100P(n) Xk" and the matching END is I ,
then i' =m, £ = £' = 0, and p' = (t,p) where
...,a.n;l) and for all j with 1 < j <n,
8y = XL, 8, =

For the remaining five cases let I, be "END",

i
P= ((al,...,an;a), q), and let the matching
LOCP instruction be I = "100P(n) Xk". If a =0,

a=1,£ =0, then i' =i+1, £' =0, p' = q; or

Ifanso,a=0,2==0theni' i, 2' =0,
P = q;

If for all j with 1< j<n, a

3= 0 but & £0
and £ = O then i' = m+1, £' =0, n' =
((a-l:---:an_l:an"lia): a);

If for some u with 1 <u<n, a.u;!O, andan#o,

£ =0, then i' =i, £' =1, p'= ((al’""an-l’an-l;a)’q“

If for some u with 1 < u<n, a.uglO, and for all
Jwithu<j<n, a.J.:-O, and £ = 1, then i' = i,

‘e!

1

0, p'=((a',---',&r'130): p) where for 1 < j < u,

at = a.j, al‘1 = a.u-l, and for u< j <n, a' = xkal,

J J
and a.n = xk.

(2.4) Definition. Let P = I, Iy-.+,I, be a Loop program.

2’
A sequence sl,..:,sm of states of‘g_is an execubion

of E whenever

(i) s, is initial, and

(ii) sﬁ is final, and
(iii) The pushdown stores of sy and s, are the same, and
(iv) For each i, 1 £i <m, S;,1 is the next state of

8 underlg.

i

If the pushdown store of s, is empty, the execution is proper.

1

(2.5) Definition. If there is a unique execution of P of length
m beginning with (ir,l,o,p) and ending with (i;,e+ 1,0,p)
* then for 1 < i< r, xi is the intgger left in Xi EX,E when

Reg (g) initially contain X, Also m-1 is the running

time.

(2.6) Definition. If for each ir there is a unique proper exe-
cution of P beginning with (ir,l,o,(O)), then let Tp(ir) be

the running time of the execution beginning with (ir,l,o,(O)).

Definition (2.2) mey seem complicated, but its complexity lies
in the multitude of clauses rather than in the clauses themselves.
A more comprehensible description of the execution of a Loop program
can be given as follows.

(1)-(i4i) If the current instruction is an instruction of type
(1), (2) or (3), carry out the instruction in the obvious way and go

on to the next instruction.

|
|| (iv) If the current instruction is "ILOOP(n) X" put the
'(ﬁd—l)-tuple (xk=l,...,xk=l,xk;l) on the pushdown store. (If n =1,
put (xk;l) on the pushdown store.) Then go to the matching END
inst{ruction.

(v) If the current instruction is "END", and if the top of
the pushdown store is (al,...,an;i) with a, = 0, and £ = 0, pop up
the pushdown store and go on to the next instruction.

(vi) If the current instruction is "END", and if the top of
the pushdown store is (al,...,an;o) with a, = 0, and £ = 0, pop up
the pushdown store and do this instruction again.

{vii) If the current instruction is "END", and if the top of
the pushdown store is (al,...,an;a) with a; = 0 for all i < n but
a, # 0, and £ = 0, subtract 1 from &, and go to the instruction fol-
lowing the matching LOOP.

(viii) 1If tbe current instruction is "END", and if the top of
the pushdown store is (a),...,2.; a) with a #0and a # 0 for some
uw<n, end £ = O, subbract 1 from a and set £ = 1; then do this in-
struction again.

(ix) If the current instruction is "END", and if the top of
mewwwmsmmishrnu%mpuﬁﬂwﬂwﬁh15u<nmd
8, #£ 0, and £ = 1, and if the métching LOOP instruction is "LOOP(n) Xk",
then set £ = 0 and put the (n +1)-tuple (al,...,au_l,aual,xkél,...,xk=1,xk;0)

on the pushdown store; then do the EMD instruction again. This ex-

hausts the cases which can possibly arise.

((

Examination of the various cases of (2.3) should convince the
reader that. the next state of a given state is unique if it exists
&t all, and thus that there is at most one execution with a given
ini.tia.l statrf:. The possibilities do arise that a state has no next
state Yet is not final, or that there is never a final state;
but the theorem about to be proved has among its consequences that
from any initial state thereis exactly o-rie execution, and thus that
‘the running time TP and the integer left in Xi are well-defined
functions from N' Znto N.

(2.7) Definition. Two programs P and E are equivalent if given
any initial state of P and E there are unique executions
of P and g whose final states are the same except perhaps in

the third from last ("instruction counter™) component.

(2.8) Theorem. Let P be a Loop program using r registers.
(1) If s = (ir,l,o,p) is an initial state of P, there
is a unique execution of P beginning with s; furthermore,
the running time and the integers left in Reg (,13,) are
independent of p, the initial pushdown store.

(1i) 1r P is of the form

LOOP(1) X
Q

Lard

END

where Q is a loop program and X is a register
name, let X contain x initially; then P is

equivalent to

>

7R o)

W

and Tz(xk) = TE(Xk) + x + 2.
(iii) If P is of the form

LOOP(n+1) X
Q

~

END

for Q a Loop program, n > 1, and X a register

name, let X contain x initially. Then if x> 0

P is equivalent to ’E =

IooP{n) X
LoOP(n) X
LOOP(n) X

2
END

: bs
END
END

\3

and if x= 0, P is equivalent to 2 =

LooP(1) X
Q

~

END
In both cases Tg(xr) = Tz(xr).

Proof. The proof is by transfinite indietion on Definition (1.1)
of ch

If Pe L, by {(1.1.1), so that @ = 0 and P contains no LOOP in-
structions, (i) of the theorem is obvious and (ii) and {iii) are
vacuous. If P e L, by (1.1.ii), so that Pe LB with B < @, the theorem
is immediate by the induction hypothesis. If'_f_: € Itx by (1.1.iii) so
that P is Q concatenated with R, any final state of Q corresponds in
an obvious way with an initial state of '13'; the details are omitted.

Now assume that P ¢ L, by {1.1.iv) with n = 0; that is, P is

LooP(1l) X
Q

END
for some Q € LB where & = B+) and X is some register name. Let
there be e instructions in E and. say x is the initial contents of
X; as an Iinduction hypothesis assume that Q satisfies (2.8.i). Con-
sider the initial state (ir,l,o,p). By (2.3.iv) the unique next
state is (ir,e,o,((x;l),p)); the next state after this, by (2.3.vii),

is (ir,z,o,((x ~-1;1),p}) if x > 0. But this is essentially an initial

state in an execution of Qb by the induction hypothesis the next
several sta.fces consist of an execution of Q which ends with
(i;_,e,o,((x ~1;1),p)) for some SEJ'? Then the next state is
(i;,a,o,((x- 2;1),p)) if x > 1; repeating the argument leads,
after x executions of Q, to the state (i;,e,o,((o;l),p)). By
(2.3.v) the next state is (fc;,e+ 1,0,p) vhich is final. Counting
the number of states not involved in the executions of 3 yields
(2.8.ii) and thus (2.8.i).

The remaining possibility is that P e L, by (1.1.iv) with

n > 0, so that P is

ilz LOOP(n+1) X
9
Ie: END

"Let the final END instruction be the e-th instruction of P, as in-

dicated above. We have to show first that the program E =

I: LOOP(n) X
I2: LooP(n) X -
Ix: LOOP(n) X
2
In: END
e
. . X
Tosx-2? END
I€+x—l: —

14

S

where x > 0 is the initial contents of X, is equivalent to P, and
that T£(xr) = Té(xr)' As indicated, we let Ié‘ be the first END
instruction of é after Q The method is to consider an execution
of f; and show that each state of this execution coi‘responds in an
appropriate sense to a state in the execution of P; the corresponde'ncé
includes the requirements that the registers be the same, and that
the pushdowm stores be "similar". Since P ¢ L and

Y Z A p-ly’

o> B4—ap"l

X, the induction hypothesis for P will yield the result
desired.

In the definition and lemma that follow, we use a consistent
notation: letters without hats refer to the program B and those
with hats refer to '_:E; for example, s and § are states of .-I.: and E
respectively. Also, a primed letter refers to the next state of
a given state; so if, for example,§ is a state of E, §' is the next

state of § under ,E Finally, x is the initial contents of register

X. We assume that x > 0.

(2.9) Definition. PFor a pushdown store p let Gjp be the object
at the j-th level of p; that is, if p= (ql,(qz,...(qk,(o))...)),
then crjp = q.j for 1 < Jj<k; if j >k, ch.p = 0. Two push-

down stores p and p occurring in states of P and P are

gimilar if for each j one of the following holds:

i) o,p = 0.p, or
(11) Ujp = (y,al,...,a.n;o) and O'Jﬁ = (al,...,an;o) and
UJ+1P = (y,bl,...,bn;b) for some y with 0<y<x; or

\¥

L (di1) 0P = (v,8),---,2,;0) and “13 = (a.l,.:.,an;l)

LR (y+ 1,0, ;b) where for 1<k <n,
bkﬂo, and 0 <y < x; or

(iv) oyp = (x - 1,8, .,an;l) and O'J.ﬁ= (al,...,s.n;l).

(2.10) Lemma. Let s?l,. . .,§m be an execution of é Then there

is an execution s 18, of P such that 8§ = §, and for

17" 1
each pair The (:_cr,i,z,p) and §j = (%r,f,f,ﬁ) we have
x,=X, for 1 < j<r, pis similar to p, and one of the

J J
following holds:

(i) 1<i<eand f=i+x-1; or

(i1) i=f=l,and£=f=0;or

(iii) g, p

£=1,.¢A=0,f=x-y+l;or

(y,O,...,O,an;a) with0<y<x,i=e,

(iv) i=e+1, £ =8+x
(v) o,p = (y,al,...,&n;a) and 1 = e, f = €+ y with

0<y<x, a.ndﬂ:f.

Proof of Lemma. let s = § = (ir,l,o,p) be an initial state of P and

~

P. Then s and § satisfy (2.10.ii), and p = p so p is similar to p by

(2.9.i). Now assume that s = (ir,i,l,p) and § = (ir,f,f,ﬁ) are states
of P and E satisfying (2.10); we prove that s' and &' also satisfy

(2.10). The proof consists in considering the cases that arise.

~ ”~
Case 1. s and s satisfy (2.10.i). Then P and P are executing
the same instruction of B and the result follows from an induction

hypothesis on Q.

I

Case 2. s and § satisfy (2.10.ii), soi=f=1,2 =% = o.
Then (2.3.iv) applies to both s and §: §'=
(i'cr,é‘+x-1,o,((x=1,...,x-' 1,x;1),p)) and s' =
(ir,e,o,((x-‘-l,x—‘l,...,x-'-l,x;l),p)). Then s' and 5' satisfy
(2.10.v) and p' and p' remain similar by (2.9.iv).

Case 3. s and § satisfy (2.10.iii), soi=¢e, § = x- y+1,

2 =1,%=0. Then (2.3.iv) applies to §, so if X, is the current

contents of register X, §==(ir,3+y-l,0,((xk=l,...,xk=l,xk;1),§)).

Also, (2.3.ix) applies to s, 50 s'= (ir,e,o,((y-l,xkll,...,xk=1,xk;0),p)).

Now p' and p'remain similar by (2.9.1ii); s' and §' satisfy (2.10.v).

Case 4. s and § satisfy (2.10.iv), so i =e+1, f = &+x.
The s and § are both final and neither has a next state.

Case 5. s and § satisfy (2.10.v), so i = e, { = &+y vhere
0<y<x, 2= f, 0P = (y,al,...,an;a), and by similarity, ciﬁ =
(a ,...,an;ﬁ). There are several subcases corresponding to various
possibilities for 5.

Subcase 5.1. (2.3.v) applies to & & =1, a =0,%=0.
Then by (2.3.v) &' = (ir,€+ y+1,0,3). First say oyp and Ulﬁ satis-
fy (2.9.i1i); then 0yp ='(y,al,...,an;0) and since & =0, (2.3.vi)
applies to s, so s' = (ir,e,o,q). But by (2.9.iii), O,p =

(y+1,5,,...,b ;b) so s' and §' satisfy (2.10.v). On the other

2

hand, if o;p and clfi satisfy (2.9.iv), then by (2.3.v), s' =

(ir,ei-l,o,q). Also by (2.3.v), & = (ir,gq-x,O,a) and so § and

8' satisfy (2.10.iv).

\§

Subcase 5.2. (2.3.vi) applies to §: &=0,a =0, % =0,
andlso s ='(ir:€*'Ya°:é)- (2.3.vi) must also apply to s, so s' =
(ir,e,O,q) and s' and §' satisfy (2.10.v).

Subcase 5.3. (2.3.vii)épplies to §: £=0and 8y = 0 for
1 _<_..j <n but a, # 0. Then § = (X,,x-y+1,0,((a),...,a _,,8,:1;38),d))
by (2.3.vii). Ify = 0, (2.3.vii) also applies to 5 and s' =

(ir,z,o,((o,a an‘l,anll;a),q)) so s' and §' satisfy (2.10.i).

R
If y > 0, then (2.3.viii) applies to s; s'=
(ir,e,l,((y,al,...,an_l,an=l;a),q)). Then £' and §' satisfy (2.10.iii).
Subcase 5.4. (2.3.viii) applies to &1 £ =0, a_ £ 0, and for
some u with 1 <u<n, a # 0. Then §"=(ir,é‘+y,1,((al,...,an_l,anzl;é‘),a)).
By similarity, (2.3.viii) also applies to s, so s' =
(ir,e,l,((y,al,...,an_l,an=1;a),q)) and s' and §' satisfy (2.10.v).
Subcase 5.5. (2.3.ix) appliesto §: £ = 1, for some u with °
1<u<n, & # 0, and for all j with u < j < n, 8y = 0. Then if x
is the current contents of X, §'=
(ir,ad-y,o,((al,...,au_l,au¢1,xk:1,...,xk¢1,xk;0),ﬁ)). By similarity
(2.3.ix) applies also to s, and so s' =
(ir,e,o,((y,al,...,au_l,au=1,xk=1,...,xk=1,xk;0),p)). Then p' and '
remain similar by (2.9.ii), and s' and §' satisfy (2.10.v). This con-

cludes the proof of Lemma (2.10).

We have thus shown that given an execution of‘E, there is an identi-
cal-length execution of‘g with the same initial state and such that

in each corresponding state the registers are identical. Also, by the

——

- W WY W ey

i &

similarity of the pushdown stores, the execution of P ends with the

. pushdown store the same as it was initially;‘g and‘g are then equivalent.

The sole remaining case is that x, the initial contents of X, is

zero. Bul then the following is an execution of‘E:

sl = (irJl)on)
s, = (x,€,0,((0,0,...,0;1),p}) by (2.3.iv)
85 = (ir,e+-1,0,p) by (2.3.v)

This proves (2.8.iii); (2.8.i) is immediate by the induction hypo-

thesis for'E and Theorem (2.8) is proved.

In view of (2.8.i) the distinction between executions and proper
executions (in which the pushdown store is initially empty) is un-
necessary, since the initial contents of the pushdown store do not

affect the quantities of interest, the final contents of the registers

and the running time.

il

§3. The previous section showed that the running time function lP
!

for any program P is totally defined. It should also be intuitively

clear that TP is effeclively computable. Thus the claim that the

- ~

running time of a Loop program is bounded a priori is trivially true,
provided that the claim simply means that given a program with its
initial state, there is an effective method of finding a number that
bounds the number of steps required for the program to halt. For
since any Loop program with any input eventually does halt, an "ef-
fective method" simply consists of rumning the program and counting
the steps.

Of course, bounding the running time of R by TP is not very
informative, for it amounts to "predicting" that E:;&II run as long
as it runs. One would at least hope for bounding functions which
are in some sense sufficiently comprehensible that they provide more
information than the previous tautology. An inevitable difficulty
is that the bounding funclions must grow at such extraordinary rates
that their sizes can hardly be called comprehensible.. Nevertheless,
the functions Qx defined below have such simple definitions and use-

ful properties that our Theorem (3.8) below has intuitive appeal as

well as technical usefulness.

(3.1) Definition. If g: N - N is a function, the function h:

N2 ~+ N is called the iterate of g (or, h is defined by

iteration from g) whenever h satisfies

h(0,z) = 2
h(y+1,z) = g(h(y,z))

2\

Often, we will write the iterate h(y,z) as g(y)(z). Thus,

g(y)'(z) = glg(... g(z) ...)), the composition being taken ¥y times.

(3.2) Definition. For & < &f® an ordinal, the function fo is
d.efinedl as follows:

(i) if o

n

0, fa(x) = x+l if x < 1; fa(x) = x+2 if x > 1;

(i1) if o= B4l, £ (x) = féx)(l);_

(1ii) if ¢ is a limit ordinal and B. is the least ordinal

+1

satisfying O = B+ ™ for some n > 0, then

fa(x) = fB-m:nx(X) .

Thus if « _is a successor, fa is defined by iteration from its
predecessor; if O is a limit, f‘a is defined by diagonalization over
a certain sequence [fﬁi] of functions where sup [Bi] = O,

In the proofs below we will use implicitly a number of elemen-
tary facts about the arithmetic of ordinals, and also the Normal

W 1

Form Theorem for ordinals less than @ : any ordinal O < mn+ for

some n, 0 < n < w, may be written

In n-1 o]
a + . G0 .
w -3, [FV] & 1 + W -8

o
where 0 < a, < @ and the a, are unique. See, for example, Suppes' book [5].

(3.3) Definition. For O = cnn-an + e + wo-a,o an ordinal, write

m-1
6@ = 2 ;8

for each m <n+1; if m > n+1, t, = tn+l(a). _.Also,

. n+l
tw(a) = tn+1(a) ifa<w .

Notice that to(a) = 0 for all ®. The next lemma collects most

of the information we require about the functions forr

(3.4) Lemma. For all x, peN, &, B < o>

(1) fl(x) = 2x+ (1l=x)

(i1) f§p+l)(x) = 2P.1_(x) > 2Py
(iii) fz(x) = 2
(iv) £,0) = 1
(v) fo(x) > x+1

(vi) q&P)(x) is increasing in p, x

(vit) if @ =B+, then fo(x) > f5(x) for x > t (B)

(viii) if @ > B, then f(x) > fa(x) for x > t (P)
(ix) z.fép)(x) < fép+l)(x) for > 1, x+p > 1

(X) (fép)(x))z S fC(¥P+2)(x) for & Z 2, X+p 2 2,

Proof. (i) If x = 0O, fl(O) = féo)(l) =1 = 2.0+ (1:0).
£,(1) = fc()l)(l) = 2 = 2.1+ (121). If for x > 1 £,(x) = 2x,
fl(x+l) = fofl(x) = 2x+2 = 2(x+1) + {12(x+1)).
(ii) Immediate for p = O. fgpﬂ“)(x) - flf:(Lp)(x)
= 2.£P)(x) = 285 (x) > 2Pk, |
(111) £,(0) = fg‘o)(l) =1, fy(x+l) = f§x+1)(1) = 2%.2, (1)

XL py (i1).

(iv)-(vii) These will all be proved simultaneously by induction

on @ and x. All are immediate for @ = 0 by definition.

L If o= 5-!-'1, then fa(o) = féo)(l) 1 proving (iv). Also,

: fa(O) > 0, yielding (v). Now fa(x+ 1) foa(x) > f.‘a(x), using (v)
1 . .
for fB. Then féw)(x) = fafép)(x) > fé‘p)(x), proving (vi). Also,
fa(x-!»l) = fﬁfa(x) > (x+1)+1, proving (v).
Now in (vii), n must be O since O is a successor. Since
fo(x) 2 x 1, fpf(x} > fg(x+1), using (vi) for f5. But fuf(x) =
fa(x+ 1) so fa(x +1}) > fﬂ(x +1) for all x > 0 = tO(B), proving {vii).
The next possibility is that @ is a limit ordinal: let @ =

+1

B +a" " where n > 0 and P is the least such ordinal. Then fa(x) =

n

f (x). Now fa(O)

Bealix fﬁ(O)"—' 1, proving (iv). Also,

£ (x+1) = (x+1)

fﬁ-l(un (x+1)

fB-}OP {x+1)

> fB-i—(an(X) by (vii) since tn(ﬁ+ W)= 0

£(x)

> (x) by (vi)

Then f&wl)(x) = faf‘(xp)(x) > fé‘p)(x), proving (vi}. .Also,

fa(o) =1>0+1 and fa(x+ 1) > fa(x) > x+1 proving (v). Finally,

1 +1

write B = B'4r where t_ . (P') =0 and v < o™, Then o = B+

1

n+l

, and by choice of B, fy(x) = £ . (x). Since r <™,

Btaw x
if x > tn+1(‘r‘) then alx >T. 8o, using (vii) for B'+ @'x and B'+ T,

- B+t
folx) = £, n (x) 20 (x) = f{x)

if x > tn(T)- But x > tm_l('f') > tn(‘r), proving (vii). This com-

pletes the proof of (iv)-(vii).

2X

(viii) If O > P there is ay > 050 & = B+y. Write
T = wna-wn-gn + e+ r.uo-go = (Dn-l-"(", so O = ﬁ+wn+‘r'. By re-
peated applications of (vii) we have fa(x) > faw)n(x) for all x,
since t_(B+) = 0. Also by (vii), £ ,{x) > £.(x) if

. n : Bat) =B

x> tw(ﬁ) > tn(B). So f‘a(x) > fB(x) for x > tm(B).

(ix) Z-f((xp)(x) = flfép)(x) < fépﬂ)(x) if @>1end x+p>1
by (1) and (viii) since fc(xp)(x) >1if x+p > 1.

{x) Trivially, 22 < 2.’2z = féz)(z) for all z. Then
(fép)(xj)z < féz) ££P)(x) < féP*z)(x)

if x+p > 2 by (viii}, since x+p > 2 implies fép)(x) > 2. This

completes the proof of (3.4)

(3.5) Definition. A function g: N" - N is bounded by f:
N - N whenever for all J-Cm, we have g(:'cm) < f(max{:-cm)), where

-max[;cm] is the largest member of S'cm.

(3.6) Bounding Theorem. Let P be a program in L,. Then
there is a number p, which can be found effectively

from P, such that fé‘p) bounds TP’ the running time

of P.
Proof. The proof is by induction on O and Definition (1.1). Say
Pe It!’ let '1: use k registers, and let m be a.ﬁ abbreviation for
%()'Ek] vhere ik are the numbers initially in Reg (P). There

are four main cases corresponding to the clauses of (1.1).

Case 1. @ = 0. Then P has no loops and so TP is identically

equal to the length of P; if p > 0 is this length, then
=y (p) (p)

by (3.4.v), (3.4.vi).

Case 2. P € I by (1.1.ii), so that P € Ly with B < 0. By
the induction hypothesis we have have q so Tp(ik) < féq)(m). But
by (3.4.viii), if we let p = tw(B) and if x g P, then f£,(x) > fﬂ(x).
By (3.4.v), £P)(m) > m+p, w0 £FV(x) = 2Pl » (%,).

Case 3. P e L, by {1.1.iii), so that Pis Q concaten:ted with
Rand Q, R € I, By the induction hypothesis, let féﬂ) and fér)
bound TQ and TR respectively. After execution of Q, let the registers

~ ~

of P contain i}'c Then Tg(ik) = Tg(ik)+ TB.(;(;‘); we have
Tg(ik) < féq)(_rg) + fér)(_nl_a_:g{?c;c})

But after execution of Qs the largest integer in any register is at

most m + féq)(g), since each instruction execution can increase the

largest register by 1 at most. But by (3.4.v) and (3.4.ix),

m +'f<§q)(m) < féq+l)(g) since @ > 1, q > 1. Thus

(%,) < fc(f)(m) + .f((xr)féq'i'l)(g)

2. 3T () by (3.4.vi)

IA

< féq+r+2)(g) by (3.4.1x)

—

V6

&9

Case 4. P € L, by (1.1iv), so that Pis

LooP(n+ 1) X
Q

Lad

END

for some Q€ LB where O = B+ wn, n > 0. We use the following

(3.7) Lemma. If Q € Ly and T, is bounded by réQ), then

2
the program P=

100P(n+1) X
L
END
(q+b+4)

has T_ bounded by f

» NI where b = tn(ﬁ).

Proof of Lemma. The proof is by induction on n. For n = O, tn(B)= 0]

for all B. Then the lemms reduces to: if Q¢ Lﬁ and TQ(;'ck) < féQ)(E)’

then 'g =

wor(l) X

has TP(ik) < fég;:“(g). There are two possibilities; first take

£ = 0. Then TQ is identically equal to the length of 9 and the

~

running time of P is exactly gx+x+2, where x is the initial con-

tents of X, by (2.8.ii}. But since by definition x <m,

TP(SEr) = {g+1l)x+2 < (g+1l)m+2
< 2q-_n_1+2

{9 (m) by (3.4.11) end (3.4.v)

A

< r§‘1+4)(m) by (3.4.vi)

Now if 0 < B < «f®, assume that T, is bounded by fé‘ﬂ. If x is the

et

number initially in X, P is equivalent to

oo

o -

By the same argument as for Case 3 of the theorem, the first exe-

cution of Q requires at most féQ)(m) steps, the second fézq+2)(g)

(3q+4)

steps, the third fB (g_\) steps, ... , and by the obvious induction,

the x-th requires at most féx(q+2)-2)(E) steps. Thus, if m> 0

mi) <3, 50w v

< X'ffgg(qw')_z)(_r_n) +2 by (3.4.vi)

< per{ia2)-2) £ (1)+ 2 by (3.4.v)

< mr ey - by (3.4.v)

= m-f (m-(q+3)) _ by (3.2) since @ = B+1
<mefy fl(qﬂ)(_n_l) by (3.4.11)

< m ;58 (m) by (3.4.vii)

< g9 (m) by (3.4.x)

I 17

if m = %) = ” (q+4) =

But even if m = O, Tz(xk) = 2, so Tz(xk) < fﬁ (m) for all X *
This concludes the proof for n = 0.

Now we assume the lemma for some n > O, and prove it for n +1.

E is then

100P(n+2) X

Q

a4

END

which is equivalent to

LooP(n+1) X
: X

LO(.)P(n +1)
Q

END
. x

END
initially in X. If x =1, TP is bounded
f(q"'bq's) since tn(ﬁ+ oY) =0;

where x > 1 is the number
is bounded b
v Braf2

(qrodd), 4o o L o, T,

by f
V T P
and by the obvious induction, for each x > 1,

{q+b+4x) (m)

Tz(ik) . fB-H.tf‘x
< rﬁ+af1x+1(q +'b'+55 +1) by (3.4.vi) and (3.2)
< meP(xﬂ)(q +b +5m +1) by (3.4.vii)
< fﬁ-&-w"(q-i-b+5E+l)(q +b +5m+1} by (3.4.vii)

A

o

= ' e veo = "o
Now if P = wm'bm + + W lbn+l+a)nbn. + + wbo, let B
& 4 oo+ . Then B+a(q+b+Sm+l) =
m n4l -
B! +0.)n(q +b+bn+5_rg+1) and furthermore B' is the least ordinal

with this property. Thus by (3.2),

Tz(xk) < fﬁ'«un+l(q +b+b +5m +1)

= f ' (q+b +b_ +5m +1) by definition of B*
ﬂl:P 1 ELSFC, A
+ n .

= f;:;::“m 5m) by (3.4.%)
-1

< éj:;::n+)fis)(ﬂ) by (3.4.i1)

< f;$::n+4)(m) by (3.4.vit)

8 . (qtb+b,+4)
But even if m = 0, Tz(xk) a2 < fB+<.0n+1

(B) = tn(B)+ bn = b+b , the lemma is proved, concluding Case 4.

(m) by (3.4.v). Since
Jc'n+1

Since in each of the four cases the p such that f((zp)bounds TP

was found effectively, Theorem {3.7) is proved. We also have imme-

diately

(3.8) Corollary. ILet P € L, be a Loop program, and let m
be the largest number initially in Reg (E) Then
there is a number p so that fép)(_l!l) bounds all the

numbers left in the registers of P by execution of P.

Proof. Since each instruction execution can increase the largest
register by 1 at most, the numbers left in Reg (P) are all bounded
by p__|+.T£(ik) <m +fép)(r_r_1). If &> 1, by {(3.4.ix) m+ fép)(m)

< fc(!p"'l)(ﬂ). The proof for ¢ = 0 is obvious.

134

-

-

§4. If a set of registers is designated for input and output, a

Ioop program defines a function.

(4.1) Definition. Let }'Cm be distinct register names, and let P be
a register name vhich need not be distinct from im' It P is
a Loop program, the (m+2)-tuple (P, im’ P) is called a_program

with input and output, }_(m being the input registers and P

the output register. The ﬁmction £: N" =N is computed by

(P, X , P) providing f(x) equals the contents of P after
~ m =m
execution of P when)'(m initially contain ;cm’ and all other

members of Reg (P) initially contain zero.

For example, if P is the program of Example (1.3), then (B.X,Y,X)

computes x*y; (‘g,x,y,}f) computes the projection p,,{x,y) = y.

(4.2) Definition. .ﬁa for 0 <a< o is the set of functions

computable by programs in ch with input and output

L= Ul

aA<w
Obviously, if ¢ > B then J:a = f’ﬁ by (1.1.ii) of the definition
of ‘La. It is the task of this section to prove that if g > B the

containment £a o &, is proper.

B

(4.3) Definition. Let F, be the program

~0
X=X+1
X=X+1

2\

| and if B is the least ordinal so o = P+ wn, let

Eoc be the program

LOOP(n-l— 1) X
Eg
END

It is immediate that F ¢ ch by Definition (1.1).

(4.4) Lemma. Let 'f‘a be the function computed by (F ,X,X). Then

o) FaY
if x>0, fa(x) > fa(x). Also, fa € S.',a.

Proof. ?O(x) =x+2 > fo(x) for all x by definition. Say that
o = p+ 1; then Ea is

100P(1) X
F

s
END

which is equivalent, when x > 0 is in X initially, to

..._&hj_&;j

s

A a(x) a(x-1) (x-1)n (x)
£ = > f > eee > >
So (agx) fg (x) > alp (x) > 21 f‘B(x) > fy (x)
x _ . :
> fﬁ (1) = fa(x) if x > 0.
Now if B is the least ordinal for which o = B+ ') and if
x >0 is in X, then g‘a is equivalent to

n.g—l:'

_fB-lwnx(x) 2 fﬁwp.x(x

 100P(n+1) X

. X
LOOP(n+ 1) X
END

: x
END

~
> e 3 e
But this is exactly the program FEmf'x' _ .So if x >0, fa(x) =
) = fa(x); this concludes the proof of (4.4).

€L

(4.5) Theorem. For a > 1, £, € Ly

Proof. fl(x) = 2x+ (1+x) is in £, via the progrem F =

LooP(1) X
G=G+*1
G=G+1

END

F=F+]

Loop(l) X

" F=G

END

where (E)X,F) computes 'fl. For a > 2, we defer the proof until
Chapter IV. The only facts we will need for the remainder of this
chapter are given by Lemma (4.4). It is possible to construct a

program for fa in ch’ but & surprising amount of labor is involved.

6Y

= r
: {f’--:r

(4.6) Lemma. If o > B, then for any constant c, fa(x)> f'gc)(x)

for almost all x.’

Proof. If o > P, then a > p+1. First we establish the result
forl fB+1

and _fﬁ.
fB+1(x) - féx)(l); for x > ¢, fB+1(5c) = féc)fé"“c)(l).

But for large X, f(x‘c)(l) = fgy(x-¢) > x by (3.4.11) and (3.4.viii).

B

Thus f, .{x) > féc)(x) for large x.

B+l
But now if o > B+ 1, for large x fa(x) > fﬁ+l(x) by (3.4.viii);

this yields the lemma.
(4.7) Hierarchy Theorem. If o> B, .C.a ? Eﬁ.

Proof. As remarked above, if O > 8, f’a o 1',6 by definition. If

.L'.a = 'Ef:}’ the function ?Ot of Lemma (4.4) would be a member of £B;

but for all e, ?a(x) > fa(x) > féc)(x) for almost all x by (4.8) and

(4.4). Then by (3.7), 'fa § £, This proves (4.7).

The Boundiné Theorem (3.6) and the Hierarchy Theorem (4.7)
together provide the rigorous justification for the claim that the
simple measure of the complexity of syntactic structure of a Loocp
program by Definition (1.1) is also an adequate measure of the power
of the program; for the Bounding Theorem implies a maximal complexity
on the functions of %ﬁ by bounding the number of steps the computation
of each such function can possibly consume. The Hierarchy Theorem
yields aminimal complexity for qa by exhibiting %1 functions which
cannot be computed in fewer steps than the number implied by the

structure of their programs.

L

It is convenient to introduce at this point a property of

the classes %1 which follows almost immediately from its definition.

(4.8) Definition. The operations of substitution consist
of the following methods of obtaining a function f
from given functions g, h:

(1) Substituting a constani: obtaining f from g

where f(;cn) = g(in,c) for some number c;

(ii) Permuting and identifying variables: obtain-

ing f from g where f(;:n) = g(&;,..-,8) and
each ti, 1<igm is one of the x,;

(iii) Composition: obtaining f from g, h where
2(%) = (%, n(z).

Also, if Cis a class of functions, Lris closed

under substitution whenever any f‘unqtion f obtained

from functions in’\o, by substitution is also a member

ofC.

(4.9) Theorem. For all o < ww, .Ea is closed under sub-

stitution.

Proof. Say (g,in,H,G) computes .g, (g,in,H) computes h, and f(:Tcn) =
g(x , h(x,)). We assume that Reg (G) N Reg (8)= (X ,H) and that
neither G nor H uses registers En. These conditions can of course

be brought about by changes in names of the registers used by G

~and H. Let | be the program

M

Then (E,in,G) computes f. This proves that ﬁa is closed under com-
position; proofs for the other possibilities, substitution of »
constant and permutation and identification of variables, are

entirely analogous and are omitied.

X

§5. The preceding section showed that %u contains some very large
functions -~ in fact, functions larger than any in f’B ifp<a--
but it is not yet at all clear that Loop programs can do anything
much but run for a long time and eventually halt with rather large
numbers in the registers. This section will demonstrate that even
L2 programs can perform quite complicated operations, and will lay
the groundwork for showing among other things that each £a contains
_very small functions more complicated than any functions in EB if
B<a.

In particular, (5.1) shows how to construct L, programs which
simulate Turiné machines; (5.2) shows how to construct Turing ma-
chings which simulate Loop programs. Theorem (5.1) is useful in
relating Loop programs to other formalisms for computation, as is
done in Chapter IV. Combining (5.1) with (5.2) yields Loop programs
which simulate other Loop programs; §6 leans heavily on this possi-
bility.

We assume that the reader is familiar with the elementary ca-
pabilities of Turing machines as discussed, for example, in Kleene
[K] or Davis [D]. Our theorems would be true using any of the various
formglisms for Turing machines; for definiteness, we give an infor-
mal definition of computation b& Turing machine much like that of
[x].

A Turing machine ® is determined by a fiﬁite set Qm!of quin-

tuples [(qi’sj’sk’d’qz)]’ where d is either "L" or "R", and such

E)

that no two quintuples of thhave the same first {wo components.

The first and last components of the quintuples of lecomprise the
states of W; the second and third components comprise the symbols

of M. One of the states, 9> is distinguished as the initial state,
and one of the symbols, So? is called "blank" and is also written
"B". Associated with the Turing machine is a tape, which consists
of a two-way infinite sequence of squares; each square has printed
on it one of the symbols of m. If the symbol printed 0; a square
is g7 the square is blank, and at any time almost all of the squares
on a tape are blank.

One square on the tape is scanned by w. A situation consists
of & particular printing of the squares of the tape, a particular
square on the tape (the scanned square) and a particular state; the
machine is in that state.

Given a situation, mmey perform a step as follows: if the ma-
chine is in state q and the symbol on the scanned square is sj, and.
if (qi,sj,sk,d,qz) € me then the symbol on the scanned square is
replaced by Sy the scanned square moves one square to the left or
right according as d is "L" or "R", and the machine goes into state
Q- If no quintuple of Qmebegins with q; sj then no act is per-
formed and the machine has hg}&ég; in this case the situation is
terminal.

The Turing machine is used by choosing some situation in which

to start it; the machine then successively performs steps until it

. halts, and the contents of the tape in the terminal situation determine

the output. Specifically, let 5y be the symbol "1". Represent the
netural numbers O, 1, 2,... by "1™, "11", M11",..., so that in the
representation of x there are x+1 occurrences of "1". Also, re-
present an n-tuple xl,...,xn by juxtaposing the reéresentations

of the x, separated by "B" so that the representation of (0,2,1,3), .

i
for example, is "1B111B11B1111".

A Turing machine computes the (partial) function f: N =+ N if
when the Turing machine is started in state 9 with the representa-
tion of in on its tape, which is blank otherwise, and with the square
just to the right of the representation of in the scanned square, then
the Puring machine eventually halts with a total of f(in) "1"s to
the left of the scanned square in the terminal situation, providing
f(in) is defined. If f(in) is not defined, the Turing machine does
not halt.

For example, if a Turing machine comﬁutes x+ ¥y, when started

in the situation

... B111B1111B ...
t

4

it may halt in the situation

... B1B11l1B1BBlllB ...
1

944

where no quintuple starts with g;, B. The notation for situations

. should be obvious.

24

'

I
I
(ﬁ.l) Theorem. Let ot be a Turing machine which computes
the function f: N -+ N. Then there is a Loop pro-
gram with input and output (TM ,Xn,S,P) where !&%REI?
which computes a function Twa Nn+1'-*N with the
following property: if s exceeds the number of steps

required to compute f(in) using M, then f(in) = TMm£in,s).

Proof. For simplicity, the theorem will be proved only for the case
n =1, and for M a 2-symbol machine with symbols {B,1}. Exactly the
same methods apply when n and the number of symbols of # are unre-
stricted.

The heart of the construction is an Ll program Step which in
effect carries out a single step in the Turing machine computation.
Step uses several main registers @, TL’ TS’ TR which contain re-
spectively the number of the current state, and representations of

the tape to the left of, on, and to the right of the scanned square.

‘Suppose the non-blank portion of the tape is

8.5 ...8 S_B...

- BS y S 8% 8 o Sy By

where each S; is "B" or "1" and S, is the scanned square. Then T

contains

2 2% lap 2% %4 st .20

-u —utl’ =1

where each t; is 0 or 1 according as Si is "B" or "1". Likewise Tg

contains to and TR contains

s

W W W W ww W ——

,.
N

I‘UJ

That is, TL', TS) TR contain numbers whose binary representations

are images of the corresponding portions of the tape.

Also suppose register Q contains a number q, where 0 < q <m

and M has m+1 states [qo,. . .,qm]. Consider the program Decode

00
0L
10
11

Q QO _a a
i |
o O O O

00 = “00

mo = “m-1,0

Cn-1,0 = ®m-2,0

€10 = o0
END 3 £ \\3{
L0OP(1) 1T i
o1 = o0
Cop = ©
€11 = %o
Cyg = ©
cml = cmO
Cro = O
END

ek

‘é; 4

It is easy to see that if Qconteins i and T, contains j, then

8
cij-= 1,bu@:cu=0fo'r1;£kor,j;!z.
Now let the quintuples of mbe [ml,...,mr}. Let Quintsm‘be
the program
Resode.
L=20
R=0
M
~r

i
is the program

Here if m, is the quintuple (qi'sj’sk’d’qz) and d is "L" then

M

%
1.00P(1) CiJ
Tg = 8y
S 3
Q =12
END

If 4 is "R", M. is the program
LoorP(1l) ¢

Ts = %

R =1

Q =14
END

ij

Here we use the obvious ebbreviation "TS = sk" for

if s, = "B", and

L}

g—

T = 0

S
Ts = TS4-1
if s = """, Likewise, "Q = £" is an abbreviation for
Q=0
Q=q+1
§ 2
Q=Q+1

Thus if the number of a state is in register @ and the contents

of the scanned square are in register TS’ Quints causes the next

state to appear in Q and the new symbol for the scanned square to be

S
R =1 if a rightward move is to be made, while L = 1 and R = 0 if a

placed in To. Quints sets registers I and R so that L = 0 and

leftward move is to be made. If the situation is terminal, Q and TS
remein unchanged and L = R = 0.

Given the interpretation above for the numbers in TL’ TS’ TR,
the effect of a rightward move of @ can be reflected by replacing
T, by 2T +Tg, replacing Ty by rm(TR,z) and replacing T by TR/2.
Here we use "TL", for example, to refer both to the regisier and its
conﬁents. Also, rm{x,y) is the remainder upon division of x by y,
and x/y is the integral quotient of x and y: the greatest integer z
so z+y £ X. Arbitrarily, we seé x/O = 0.

These functions can be carried out in Ll' Consider the follow-

ing program RM ("rightward move").

3

I IR
100B(1) T, |
Tp = Tl T, <21,
TLR = TLR+ 1
END
I00P(1) T
o= Tt Ty 2T +Tg
END
t .
TL = O
t Sl L}
Tsr = Tor*? W
T = O
T00P(1) Ty & 1, © (2, 2)
T o= .
SR
1
Tsg = Tsr
1]
Togg = T /
END
Top = O
1] =
T, = O
LooP{1) Tp
T =124 -
K TRI} - } "~ T/°
RR
-— t
. Ten = g
1 =
i = T
END

RM places 2'T; +Tq in Tip, rm(TR,Z) in Tgp "R

but does not change TL’ TS’ TR' _ Of course there is a corresponding

program LM which puts 2-Tp +Tg in Ty, rm(TL,2) in Ty and TL/2 in

without changing TL’ S TR and which thus simulates a leftward

, and TR/Z in T

T

move.

Now let SteE be

Quints g,

I

RM

Loor(l) L
T = T
Ts = s
Tr = Ty,

END

100P(1) R
T =T
Ts = Tgr
Tr = Trr

END

Step is an Ll program; given the number of a state in @ and a
tape configuration in TL’ TS, TR’ execution of Step leaves the
next state in @ and the next tape configuration in TL, TS, TR' But

then if an initial situation is in Q, TL’ TS’ TR’ t.he'L2 program

Result =
Mnavwvm
10OP(1) S
Step
END

leaves in TL, TS’ TR a representation of the tape configuration after
s steps of M, where s is the number in S; if s exceeds the number of
steps required for M to hali, the final tape is left in TL’ TS’ TR'

Thus the only remaining tasks are to find a program which, when given

en input number, produces the corresponding initial situation, and
to find a program which, given a tape situastion, yields an output
number from the final tape representation.

According to the formalism agreed upon above, if the input
number is x, the tape representation is astringof x+1 "1"s just

to the left of the scanned square; in other words, we want TL to

contain 2x+1_ 1 and TS o TR to contain zero. The job is done by the
L2 program Input:
Q=20
TL =0
Ts =0
T =0
X =X+1]
LooP(1) X
x+).
I00P(1) T, y Tpe2-1
TL = TL+ 1
END
' TL = 'I.‘L+ 1 }
END

Next, the output number is to be the total number of "1"s oc-

curring in the binary expansion of TL' The L, program Quiput =

P=0
LoOP(1) Ty,
T 1—rm(TL,2)
T, «-—TL/z
LOOP(1) T
P=P+1 PEP+T
END

END

Lo

leaves in P the correct number. We have used, for example,
“T'e-rm(TL,Z)" as an abbreviation for a program which puts rm(TL,Z)
into T without destroying the constants of TL. The necessary pro-
grams appear as part of the program Eﬁ above.

Finally, let TM_be the L2 program

InRut
Result
wﬁn

OutRut

Then {TM ,X,S,P) compules TM@Qwith the properties requifed, and

Theorem (5.1) is proved.

(5.2) Theorem. For each n > O there is a Turing machine EFh
which computes a function LPh: Nn+1 -+ N with the follow-
ing property: if (g,in,P) is a Loop program with input
and output which computes f: N -+ N, then there is a
number e so that LPn(e,in) = f(in). Furthermore, if Tj
is the running time function of P, then there is a cogt_
stant ¢ so that the %total number of tape squares ever

scanned in the computation of LPn(e,in) is no more than

c-(ed-max[in]-+TP(in))3.

Proof. We will not actually construct L£Pp, but we will give enough
details so that it should be clear to anyone with some familiarity
with computation by Turing machines that ﬁF&l exists. Actually, the
first part of the theorem is immediate from the intuitive computa-

bility of functions defined by Loop progrems.

7

| For each (z,in,P) there must be an e so if (g,in,P) computes

" f, then LPn(e,Eg) = f(in). Thus e should somehow encode (E,in,P).

When this is the case, it is usual to say that e is a GGdel nunber
of (E’in’P)'

The encoding can be done in a variety of ways; the one suggested
here is particwlarly simple. First, we may as well assume that
Reg (P) = [ir}, that the input registers are in’ and that the output
register is Xl, since clearly for any Loop program with n input
registers and an output register, there is another program in the
desired form. (The new program is obtained merely by meking the
proper changes in the names of the registers and possibly adding an
instruction "X

1
consider programs like (g,in,xl) where Reg (P) = [ir]. Now, using

= Xk" to put the answer into Xl.) So we need only

an eight-symbol alphabet:
LE=X1/+0

rewrite P by placing "/" between the instructions,by changing

- "LoOP(n)" to "L1 ... 1", that is, to "L" followed by n "1"s, by

changing "xk" to "X1 ... 1", that is, to "X" followed by k "1"s, and

by changing "END" to "E". Thus the program P =

X2 =0

LOOP(1) Xl
Xz = X2+-1

END

X = Xz

44

would become
X11 = 0/L1X2/X11 = X114 1/E/X1l = X1l

Since 8 different symbols can apperar in this representation, the
representation of any program E can be interpreted as a base 2
number; take "L" to have digit value 1, "E" to have value 2,...,
"0" to have value 8. We will let the blank "B" have digit value 0.
Thus given any program E there is a unique number e associated
with it, and if e is written in a base 9 notation P is recoverable
immediately. On the other hand, not every number e has a corres-
ponding program; for example, all those numbers which contain signi-
ficant zeroes in their base 9 expansion.

Now we proceed to describe the operation of L& Recall that
£Pn is given an (n +1)-tuple (e,in) consisting of e+ 1 occurrences
of "1", followed by "B", followed by x14-1 occurrences of "1",...,

followed by "B", followed by x, +1 "1"s. We write this initial tape as
.ntBng“.B%B.“

where the underlined letters x represent a string of x+1 "1"s.

25%1 performs as follows: first go to the representation of e and
rewrite e as its base 9 represen%ation (which, as explained above,
is an image of B). Call this sequence of symbols €. Of course, the
length of € is no longer than the length of e; in fact the replace-
ment can be done using no more tape than is consumed by e itself.

The tape thus becomes

l a -
} ...8Bx B...BX B...

Then £Pn checks € to make sure it represents a permissible Loop

program; the checking consists of examining each instruction to
make sure it is a legal instruction, and verifying that TOOPs and
FENDs are nested properly. If € does not represent a syntactically
correct Loop program, £, erases its whole tape and stops. Thus,
in effect, every number e will be associated with some function;
those numbers e which cannot be associated with a syntactically
correct Loop program will all represent the function which is iden-
tically zero.

If on the other hand € represents a syntactically correct Loop
program, L, examines € to determine the registers ir it uses, and

then changes the tape to
P
”.BeBng.nBEntB.“BQB.”

which represents € followed by the r-tuple (in,o,...,o); that is,
the initial contents of ir since xn+1,...,xr are zero. Continuing,

£8, produces the tape

..-BE€Blx,B...Bx BOB... BOB|1B|OB|B ...

1
1 s 2 3| ¢ 5

which, for convenient reference, we have divided into five regions.
Region 1 contains €, which represents the program P being simulated;

regions 2-5 together represent the initial state (ir,l,o,(o)) of P.

e

ip

EF%I is then ready to begin simulating P. In general, just before
beginninglﬁ,step in the simulation, ﬁfﬁl will have on its tape the

following sequence of symbols, if the current state is (ir,i,L,p).

...B&|Bx,B...Bx |Bi|Bt

1
1 2 3

BBa, ,Ba, B. . .ngll}m. - -BBa, ;Ba, B.. .ngj 4BB. -

S

4

The representation of the state used in region 2-4 is obvious. The

contents of region 5, which represents the pushdown store, are inter-

preted as follows. The object at the top of the pushdown store is
(all, aBl""’akll)' More generally, the object at the m-th level
of the pushdown store is (alm, a2m""‘akmm)' Tuples on the push-
down store are separated by double blanks, and members of a tuple
are ;eparated by single blanks.

What is the length of this representation of a state? The length
of region 1 is no more than e+ 1. Suppose the simulation has run for
s steps, and let m be an abbreviation for max{in], that is, the largest
number initially in the registers. Then each of the Xy in region 2
is no more than m+s. So the length of region 2 is no more than
r-(gy+s-+2). But according to the encoding we have chosen, r is cer-
teinly less than e. So region 2 has a length of less than e-(gg+s‘+2).
Again, the number i represented in region 3 corresponds to the in-
struction about to be executed, which is a number certainly less

than e, so region 3 has a length less than e+ 2 squares. The 4 of

region 4 is either O or 1, and so the length of fegion L is 3 at most.

3

Wheé%er a tuple is placed on the pushdown store, all its members
are bounded by the largest number in any register. Since nothing on
the pushdown store ever becomes grealer than the largest register,
any single number anywhere in the pushdown store is bounded by m+ s.
The largest tuple on the pushdown store has at mosﬁ e components,
since the number of components is a function only of g; the depth
(number of tuples) of the pushdown store cannot exceed s, the number
of instruction executions taken so far. Therefore region 5 has a
length bounded by s-(l+e-(m+s+2)).

Each of regions 1-5 has its length bounded by a polynomial of
degree at most 3 in s, e, and m. Therefore, the sum of the lengths
of regions 1-5 is bounded by c-(e-bm-+s)3 for some constant c.

The discussion so far has been fairly rigorous, except for the
claim that the string of "1"s representing e could be turned into
the string €. The main portion of the construction whose details
we will omit is that of showing that Py can transform the representa-
tion of a state as specified abové into the representation of the next
state, without using any tape squares other than those already used.
We leave to the reader the tdsk of convincing himself that this is
possible, with the reminder that £P, may use a large number of extra
symbols to mark tape squares in which it has a special interest at
some moment. We may also remark that all the theorems in the sequel
which use this theorem would be unaffected if the polynomial bound

c-(e+g+ s)3 were replaced by any exponential in e, m and s; and

.finally that the encoding we have chosen is actually rather inefficient

5

-

aﬁd that by using a binary encoding of the numbers making up a
state, the present theorem would remain true with a bound on tape
consumption of d-log2(1+ e +m+s) for some constant d.

Granting that .EPn is able to replace the rep_fesentation of v
a state by the representation of the next state without using more
tape than is consumed by the states themselves, the theorem fol-
lows immediately. For SPn simply keeps simulating £ until a final
state is reached, then erases all of the tape but the portion con-

taining x, and halts on the rightmost square of the representation

1

of X, - Thus £8, has computed (P,}-(n,xl); and since the program runs v/

for Tp(in) steps by definition, the total tape consumption is bounded
7 = 3 - = \\3
by c-{e+m +T£(xn)) =c (e+ma.x[xn] +TP(xn)) . This concludes the

~

proof of (5.2).

(5.3) Theorem. For each n > O there is an {, function M:
N2 N so that for any Loop program (P,X ,P) which
computes f: N© - N, there is an e such that Mn(e,in,s) =

(:T:n).

B

£(x,) provided s > T

Proof. By (5.2) there is a Godel number e for (E,in,P) so that
LPn(e,}-cn) = f(in), and LP is computable by a Turing machine £
whose total consumption of tape is no more than c-(emax[in]+TP(§n))3
squares. For brevity let this number of squares be t. Now sa; R

has q states and uses k symbols. Then the total number of distinct

tapes appearing in the computation is no more than kt , since each

57

tape square can have printed on it one of the k symbols. At each
situation oécurring in the computation the Turing machine is scan-
ning one of the at most t squares, and is in one of the q states;
therefore at most q.t-kt different situations can arise in the com-
putation. If one of these situations is ever repeated, the whole
computation must be caught in an endless loop; but this does not

happen, so the Turing machine must halt within q-t-kt steps, that

‘is, within a number of steps

c- (e+max{x }4T _(x))3
q-°-(e-+max[§n]+-Tp(in))sok n® g n

L d 5

= B(e,in,'rp(in))

Rememfering that q, ¢, and k are fixed numbers, it is easy enough
to show that B is actually a member of 22. Alternatively, it is
easy to show

(e4x 4+ + ~+x,+Tp(Xy))

B(e,% ,Tp(k) < 2° =
for large enough arguments. Since fz(x) = 2% and ?z(xi-l) > fz(x),
there is a constant b s

B(e,in,TE(SEn)) < ?éaj(e:i-xl PR xn+TP(:'cn) +b)

~

n

B'(e,x,Tp(x,))

But B' is a member of £2 since it is obtained by substitution from
menbers of 52‘ The function x+y, for example, is in El via the

program A =

Y

!--?—?

™
. Py

LOOP(1)- X
YT=Y+1
END

where (A,X,Y,Y) computes x+y.

Recall that the Turing machine ﬁén of (5.2) is a particular,
fixed machine. Apply (5.1) to this machine to get an £, function
so that if z exceeds the number olf steps required for LF,

to halt,
TMEP (e:'in:z) = LPn(e’in)
n

Then take Mn(e,i'cn,s) = TMspn(e,)-cn,B'(e,in,s)). By the fact that B'

js increasing, the proof of (5.3) is-complete.

§6. All the investment in labor of §§2-5 now begins to pay off.
We have several easy theorems which characterize the classes f.a

for @ > 2 in three ways, and which show each class Si’,a fora > 2

has two important closure properties. Finally, ﬁa-l_-l has a universal

function for f’a’ and {] has a very small function not in S.'.a.

(6.1) Theorem. For ¢ > 2, a function f: N' » N is in S',a
if and only if there is a program (P,)-(n,P) which com-
putes f such that TP is bounded by fép) for some num-
ber p.
Proof. The "only if" part is simply the Bounding Theorem (3.6).
: - (p) - s y<2(p)
Conversely, if Tz(xn) < £y (ma.x[xn]), then Tg(xn)Sfa (xl+ + X+ 1).
This latter function is in j.',a. Then by (5.3) there is an e so
=y = 3p) - i
f(xn) = Mn(e,xn,fa (xl Foeee + x4 1)). Since M e £, by substitu-
tion f € .[‘,a for ¢ > 2.
This theorem is interesting because it shows that if we have
any program P which computes £, no matter how deeply the loops of
P are nested, so long as the running time of R is bounded by fép)

then E can be rewritten as an La program.

(6.2) Theorem. For o> 2, Ea is the class of functions which
are computable by a Turing machine where either the
running time of the Turing machine or its consump-

tion of tape is bounded by fép) for some number p.

Proof. Immediate by (5.1), (5.3), and the argument of (6.1).
Theorems (6.1) and (6.2) provide further evidence for our
basic claim that the complexity of a function can be measured by
the ordinal assigned to its Loop program. In partiéular, (6.2)
assures us that the hierarchy of sets fu does not arise because
of some peculiarity in the definition of Loop program, but that
in fact if some function f is in £, but not in £B (where o > B)
then f is more difficult to compute than any function in SB even

if the computation is done by the familiar Turing machine.

(6.3) Theorem. The n-argument functions of %1 are pre-

cisely the functions expressible in the form
AR = op) -
f(x) = Mh(e,xn,f& (max[xn]))

for some numbers e, p, and vhere Mh is a particular

funetion in 52'

Proof. That each f is expressible in the required way is an imme-
diate consequence of {6.1) and the Bounding Theorem (3.6). The
converse follows from Theorem (4.5) and the closure of %a under
substitution.

Theorem (6.3) characterizeélﬁu in a purely arithmetic manner,
without reference to Loop programs or Turing machines. Notice,
however, that we have not yet proved Theorem (4.5) which shows
that %: € Ea; thus to avoid circularity we will refrain from using
"(6.3) until (4.5) is proved. Theorems (6.1) and (6.2) do not de-

pend on (4.5).

(6.4) Definition. A class Cfof functions is computation-
time closed if whenever f ¢ t, there is a functicn

b}

‘0
Se € {, such that Sp

steps required to compute f on a Turing machine,

pointwise bounds the number of

and if conversely whenever there is an Sp €\3
which bounds the number of steps required to com-

pute some function £, then f ¢ (1.
(6.5) Theorem For o> 2, £b is computation-time closed.

Proof. Immediate, using (6.2) and the fact that ?‘a € f’a and 'f\‘a(x}
> fa(x) for . > 0.

It can be proved that every class of functions which is closed
under substitution, computatiion-time closed, and containing a suf-
ficiently large function is also closed under the operation of limited
recursion defined below; we will use anotﬁer, more direct method
to show each £b is closed under limited recursion. The proof
ylelds a corsllary which indicates the power of the classes ﬂa

for a < w.
(6.6) Definition. If f obeys the conditions

£(x_,0) = &(X_)

f(;(n:y"‘ 1) = h(}-(nxy’f(in:Y))

then f is said to be defined by primitive recursion from

g and h. We allow the case n = 0, so that g may be a

function of O varisbles, that is, a constant.

(6.7) Definition. If f: it

't

|
5. - N is defined by primitive
recursion from functions g and h, and if in addition
we have f(iin,y) < b(in,y) for some function b and all
in, y, then £ is said to be defined by limited

recursion from g, h, and b.

(6.8) Theorem. For q > 2, ﬁa is closed under limited
recursion. That is, if £ is defined from g, h, be .('.'.a

by limited recursion, then [€ f’a'
Proof. We have

f(;tn,O) B E(in)
f(;cn:Y"' 1) = h(;(nJYJf(in:Y))
£(x,,¥) < v(x»¥)

where g,h,b ¢ .E.a. Let (E,}-(n,G) be a program for g where G ¢ La
and G does not destroy registers in and Y. TLet ('}l,}-(n,Z,F,H) be
a program for h where again H € La and H does not destroy the
contents of }-(n, %, F. We also assume that the registers of 2
and H do not overlap except for)-{n. Such programs are easily

found given any programs for g and h. Then let F be the program

i~

g
F=0
z2=0
Loop(1l) Y
i
F=*H
Z=2Z+1
END

cA

Then (E,f{n,Y,Fj computes £. For say y = 0; then the instructions
within the Loop are not executed, and after execution F contains
g(:'cn) = f(;cn,o). If y > 0, after the first execution of the in-
structions in the Loop the contents of F are h(in,é,g(in)) = £(x,1);
by.induction , after the y executions of the instructions within
the loop, the contents of F are h(in,y— l,f(in,y- 1))= f(;:n,y).

By counting the steps required to execute T,
T (%)r—-T(;c)+ZY-1[2+T(:-c z2,8(x ,z))] +y + 4
F X0 G'n z=0 B n’pe’yn’ y
By the Bounding Theorem (3.6}, if we let m = ma.x{fcn],
_ <3 Y
Tpy) < £2(m) + 2 2+ £ (max(m, 2, 2(%,,2))] + ¥+ &
By (3.8) since b ¢ l‘ia,
= ¥-1
Tz(xn,Y) < fép)(m) +Ez=o[2+ fC(f)(max[g,zafér)(max[}g.,z})])] +y +4
< £P))+ (y22) (2 + £52 (maxin,y, 257 (maxln,)) + v+ ¢

Then by using Lemma (3.4) repeatedly, exactly as in (3.7), there
is a number s so that TF(in,y) < fés)(max(g_a,y]). But then by (6.1),
fel, This concludes (6.8).

The method yields two corollaries.

(6.9) Corollary. If f is defined by primitive recursion

from g ¢ 17 h ¢ l'.a, then f ¢ £a+l'

£a+

AP

Proof. If f is defined from g and h exactly as in the theorem,
except that the requirement f(in,y) < b(J-Cn ,¥) is dropped and we
now allow g € £a+l ; then the program for f given in the proof of

L
(6.8) still works}- by Definition {1.1) of Loy E € £yt

(6.10) Definition. P, the class of primitive recursive

functions, is the smallest class of functions con-
taining the successor function s(x) = x+1, the iden-
tity funetion i(x) = x, and closed under substitution

and primitive recursion.

(6.11) Theorem. The class U £ _ contains the primitive
a<o a
recursive functions.

Proof. .l',o contains s(x) and i(x). By (4.9) and (6.9), each primitive

recursive function is in .l',a for some G < W,

(6.12) Theorem. For each @ > 2, £,y cOntains a universal
funetion for .(:a; that is, a function Uy Nz -+ N so
that if f: N - N is a function in .ﬁa, there is an e
80 Ua(e ,X) = £(x), and conversely for each fixed e,

Ua(e,x) is an £, function.

Proof. GCiven a function g, its iterate g(Y)(x) is defined by a
special case of primitive recursion (see Definition (3.1)). Thus

in particular the function ?g‘y)(x+ 1) is in f‘a+1‘. Take

Ua(e,x) = Ml(e,x,?ée)(x+ 1})

& &

+

For each fixed e, Ua € .\Za Also, each function in ,Eu must have an
infinite number of Gddel numbers; for example, an arbitrarily large

number of (useless) "X = X" instructions may be prefixed to any pro-

gram. Thus by (6.1), for every f ¢ Lo there is an e so f(x) = Ua(e,x).

Notice that although we used (6.9) in this proof, the theorem
follows essentially from the computation-time closure of £ and the

fact that ‘fﬁ-l-l contains a function which bounds every function of Ly

(6.13) Corollary. For each 0> 2, fouq contains a charac-
teristic function (that is, a function whose range

is {0,1}) which is not in Lo

Proof. It is immediate that the function l:x is in 1',1 and hence in
foy - Teke g(x) = 1=Ua(x,x). Then by Cantor's diagonal method, if

g € fy, g must have a Gddel number e; g(x) = Ua(e,x). But then
I;Ua(e}e) = g(e) o Ua(e)e)

which is absurd. i

(.Y

III. MULTIPL® RECURSIVE FUNCTIONS

§7. This chapter studies the theory of the multiple recursive
functions. Many of the results in this theory have exact counter-
parts in the theory of Loop programs developed in Ghapéer II; it
also turné out that the .methods of proof of the corresponding
theorems are often quite analogou§. In large measure the similar-
ity in the development of the two theories occurs simply because
the theories are, in fact, very similar; it is also due to a cog-
gcious attempt to draw the appropriate parallels. This attempt is
made in the belief that both the author and the reader benefit from
the technical econcmy achieved by using a few tools rather than a
large collection. Finally, we believe the methods used here and
in Chaﬁter II are of great utility in the characterization of sets
of computable functions; support for such a claim can only come
from successful use of these methods.. .

The theory of Loop programs may be regarded as an atiempt to
examine the result of restricting the notion of program in such a

way that the structure of a program controls the complexity of the

' operations the program performs. The theory of-LooQ programs is

thus in the tradition of the Turing-computable fﬁnctions: those
functighs computable by Turing machines. Here we take "Turing
machine™ in the broad sense of referring to all the various theo-
retical machines which serve as models for digital computers. But

it is well-known that several quite different ways of defining

‘(jl‘-l

.

“"effectively computable” all lead to exactly the same class of
functions. Chief among tﬁese alternative approaches is the defini-
tion of functions by .Herbrand-GBdel-Kleene recursion equations.

We summarize this approach, following Kleene ﬁ;, §54].
Iﬁagine a formal language puilt up from several basic symbols:
= (equals), ' (successor), O (zero), (,) (left and right paren-
theses), £, g, h, 21’ &) 213..., (function letters), x, y, 2, X9
Ypo Eyreces (variables for natural numbers), and , (comma). From
these symbols are constructed several kinds of formal expressions.
The numerals are 0, 0', 0",...; these stand for the natural numbers
0, 1, 2,... . The formal expression which is a numeral for a number
x we write v(x). Terms are 0, any variable letter, expressions of
the form t' wﬁere t is a term, and f(tl,...,tn) where £ is & function

letter and ¢ ..,tn are terms.

1=
Next we have equations of the form t = s where t and s are

terms. Systems of equations are finite sequences €08y of

equations. The systems of eguations are the basic objects of study.

A system of equations may have a principal functicn letter:

the first (left-most) function letter of the last equation of the

system.' From a system of equations formal deductions msy be made.

The deductions are precisely analogous to deductions in formal

logic from a set of postulates. There are two rules of inference:
(Rl) From an equation containing a variabie letter,

we may péss to the equation obtained by substituting

a particular numeral. for every occurrence of

the variable letter.

(R2) From an equation of the form f(v(xl),...,v(xn))
= y(x) and another equation r = s, we may péss
to the equation which results by substituting
v(x) for one or more occurrences of f(v(xl),...,v(xn))
in the equation r = s. |
Then a deduction of an equation e from a system of equations E is a
sequence of equations, each of vhich is either one of the eguations
of E or obtained from one (or two) of the earlier equations of the
deduction by an apglication of Rl {or R2).

A system of equations E defines the function ¢ recursively when-
ever the following holds: £ is the principal function letter of E,
and for all x),...,x the equation f(v(xl),...,v(xn)) = v{x) is
deducible from E if and only if Q(xl,...,xn) = X, If.a (total)
function has a system of equations which defines it recursively,

the function is called general recursive. Kleene shows that the

class of general recursive functions is precisely the same class as

" the functions computable by & Turing machine.

The class of multiple recursive functions mﬁy be defined in an
analogous way; we will instead use a slightly different approach,

and then discuss its relationship with the Kleene formulation.

3

{7.1)

Definition. For some n > 1 and m > O, suppose

the function £ :Nn+m - N satisfies the 2" equations:

f(ol'-'Jo:l‘}m) = Fl
f(b,---,o;xn‘t"l, &m) '-"- Fz

£(0, .+ ,0,x, 1+ 1,o,§m) = Fs

1

£(x) #1,000,%, + 1,§m) = an

" where Fl, ces ,Fan are formulas built up from constants,

(7.2)

defined by n-recursion from SERERRY::

variables in , im’ and functions g ,...,g, by sub-
stitution. Suppose also that Fl contains no occurrences

of £, and in each other equation
£(gl" . ':gnJYm) = FJ

where each §i is either “xi+ 1" or "0", each occurrence

of £ in Fshas ak, 1 <k<n, sof appears in the context
a 1] "

f(gl’”"gk-l’xk’Tk-!-l""’Tn’sm) where E.k is "x +1", anq

T . ’Tn’gm are terms (i.e. formulas) built up from

k417"
variables §m and those x, for which & = "x, +1" by ap-

plication of SWRRETT:™ and f. Then f is sald to be

r’

Example. f 1s defined by 2-recursion from gyre+18,

if £ satisfies

£(0,0,¥) = Sl(Y:S)

f(O,x2 +1,¥) = _f(O»xz;sa(Y))

f(xl+110:Y) = f(xl:g3(f(xl:x11¥+l)):Su_(Y))
£(x; +1,x, +1,¥) = gg(£(x),2(x, +1,%,,¥),¥))

. I

-

i

=

(7.3) Definition. For each ordinal & < a?ﬂ ﬂa is the least
class of functions sﬁtisfying
(i) 1If @ = 0, R, contains the successor function
s{x) = x+1 and the identity function i(x) = x
(11) 1t P <, ﬂﬁgﬁ’a
(ii1) R, is closed under substitution
(iv) If @ = B+d for .some n >0, and f is de-
fined by (n +1)-recursion from Byser 18, € RB,
then f € R,.
We will call R = U ,, &, the multiple recursive functions.

cgw
Also, for eachn > 1,

U is the class of n-recursive
acep ot g ey
functions.
It will be seen that if a function f is defined by n-recursion
from well-defined, total functions gi?""gn’ then f is in fact a
well-defined, total function. The proof is by induction on the

well-brdering of n-tuples of integers under the lexicographical

ordering.

(7.4) Definition. The n-tuple in is lexicographically less
than the n-tuple in (in symbols, (in) < (in)l whenever

. there is & u such that x <y, and for all i <u, x;, = y,.

Notice that this relation is a well-ordering of order type

o by the mapping

-1 o
(x,) & of "Xy + + @ .x

T
%

i

*(7.5) Theorem. If f is defined from total functions

€yr+ 08, BY n-recursion, £ is a total; well-

defined function.

Proof. We have the equation f(O,.--,O,&ﬁ) = F,. By the definition,

F. cannot contain any occurrences of f; so f(O,..T,O,?ﬁ) is uniquely

1
defined for all iﬁ‘ Now suppose'f(in,im) is uniquely defined for
all j_ end all z with (z;) < (x,). Then £k ,¥) = F,, where F,

is a formula built up from (some of) gl,...,gr and occurrences of

£ of the form f(i*n,ém) where T,,-.+,T,,8;,..,8, are terns and, by
definition, (@n) < (:"cn). Thus f(;'cn,irm) is uniquely defined.

Now by Definition (7.3) each function f € R, is defined by a
sequence of equations, each of which defines a new function used in
the definition of £f. The initial equations in the sequence define
functions from the initial functions s(x) and i(x); and each eguation
in the sequence is either an instance of substitution which defines
a new function from functions défined earlier, or‘part of an instance
of the schema of n-recuraion from functions defined earlier. These
equations can of course be translated into the formal equations of
Kleene; this is really nothi;g more than a one-for-one replacement
of the.informal symbols of'the defining equations ;:; the formal
'symbols of the recursion equations. Conversely, if should be ob-
vious that each system of formal equations whicﬁ obeys a few purely

syntactic rules defines a multiple recursive function. The rules

are: each equation e is either of the form f(xl,...,xn) = T, vhere

. T is a term containing no function letters, or is of the form

m,b

L

f(xl,-.:,xn) = T, where T is a term containing fuq?tion letters de-
fined by earlier equations (formal subsfiéution),_ér is part of the
(formal)lscheme of n-recursion corresponding to the (informal) De-
finition (7.1). We also require that each system of equalions be
consistent: tﬁat it not define the same function letter twice, nor
use the same function letter with va}ying ﬁumbars of.arguments.
Again, this restriction is purely syntactic. We may also attach

an ordinal ¢ to each function letter used in such a restricted
systeﬁ of equations: if a function letter f is defined by {formal)
substitution from function letters fl""’fr’ attach to f the
ordinal @ = max{cx ,...,ar] where O,,...,0 are the ordinals attached
to fl,...,fr; or if r = 0, s0 f is &efined by substitution from the
empty set of functions, & = 0. Also, if f is defined by (formal)
(n+1)-recursion from gl,...,gr, assign £ the ordinal & =
maxﬂal,...,ar}%-up. Then assign to a system of equations the or-
dinal of its principal function letter, and let R, be the set of
those systems of equations with ordinal less than or equal to Q.
The point is that the systems of equations in R, have a purely
syntactical definition; furthermore, given a sequence of formal
symbols, we can effectively test whether the sequence is in Ra.
Finally, each member of Ry is a syétem of equations in the Kleene
sense, so deductions may be made.from such a system in exactly the

same way as they are from the more general s&stems of equations.

It should be clear that a function f is in qz if and only if there

-

e

.__?\

is a system of equations in R, which defines £ fecursively.
Other writers use definitions of n-recursion somewhat differ-
ent from ours. Péter [PL, P2], for example, uses a slightly less

general scheme in which I obeys

f(xn:ym) = E(Ym) if xl 0 ...'"xn =0

f(il +l""’xn°+l’im) =F otherwise

where each occurrence of f in F has the form
f(xld-l,...,xi4-l,xi+l,Ti+2,...,Tn,ym)- Our developmezz.gould just
es easily have been carried out in this way. Robbin [JR] uses a more

general scheme.

£(x,,¥,) = F, if (x) =+(0,...,0)
£(x ,¥,) = F it (k) # (0,...,0)

where Fo is a formuls not containing f, and every occurrence of f

in F is of the form f(Tl""’Th’sl""’Sm) where T,

are formulas and for all (in) # (0,...,0), (Eh) < 6§n). The only

,...,Th,sl,...,sm
problem with this scheme for our purposes is that given a pair of
equations in the above form, it is not clear from their syntactic -
structure that f is properly defined, because the condition (Th) < (in)
ié not a syntactical property, but depends on the values of the functioné
involved. In fact, given a pair of equatio&s like the above, it is
effectively undecidable to determine in general whether éhe condition

(Tn)<:(§n) is met. All of these approaches have the common property

-4

that a function is defined by induction on the lexicographical well-
ordering of n-tuples. As we will di.scover, all the variations are

equivalent in that they lead to the same classes of functions.

]

1

e
u'\

§8. This section corresponds to §83-4 of Chapter II in that it
eatablishes the rate of growth of the 1a.rgest.; functions of each
class Ra. There is a Bounding Theorem for &a, much like Theorem
(5.6), showing that each function in & is bounded by fif& for
some p; and a Hierarchy Theorem for Ra, wfu'.ch proves the inequaliﬁy‘

Ra o f, for a > P by demonstrating that f € Ra for ¢ > 1. Thus

B lix
the Bounding Theorem for Ra'is different from that for ﬂa, in that
the former limits the size of the functions of R.a, whereas the latter
bounds the computation time of functions of .Ea The bound on the
functions of ‘ﬁa came as a corollary to the bound on computation time;

revilrse
the reserve will be true of Ra.

(8.1) Bounding Theorem for R’a' If £:N" = N is a function
; - (p) =51y
in R, there is a p such that f(xn) < (mx{xn}),
p depends effective on the recursion equations defin-

ing f.

Proof. Iike that of the Bounding Theorem for Loop programs, this
proof is by induction on Definition (7.3) of Ra. There are four
cases corresponding to the four clauses of (7.3) which exhaust the

ways by which a function f'may be a member of e

Case 1. f(x) = x+1 or f(x) = x. We have immediately that
£(x) < £ (x) < £M (). "
Case 2. f € R, and P < a. Then we have a p so that f_(:'cn) <

=
(p) - ‘ !
flw(ma.x[xn]) by the induction hypothesis for RB and (3.4.viii).

T -1

Case 3. f is defined by substitution from functions gl,...,gre Ra.

The theorem is immediate by Lemna (3.4).

Case 4. f is defined by (n+ 1)-recursion from functions

g s+038 in R,, vhere & = ﬁ~rup. This case is proved by induction
1 r B

on n. Suppose F is a formula built up by substitution. We define

the depth of F by induction on its structure as follows: the depth

of & variable or a constant is zero; the depth of gtFl,...,Fm) vhere

Fy,..-,F are formulas is max[depth(Fj)}+ 1%

Now consider the base of the induction, n = 0. Then & = B+ 1

1

and T is defined by l-recursion from s+ 18, € RB. We have

f(o,&m) =F

Let a te the greater of the depths of Fl and, Fz, and let b be suf-
ficiently large so fi:g bounds each of Byree 18y and elso all the

constants occurring in Fl and FE' Then

(ba)

(max(5,))

Suppose for each z < x where x > O we have

. (baz+1) _
2(z,¥,) S 11 (max(z,y_})

By definition, f(x-bl,&m) = F,. But since each occurrence of f in

F, is of the form f(x{Tm), by the increasing property of f1+ﬁ and.

2

the hypotheses on F, and T,

2

(ba.x+2

148)(maxgx + l,f(m])

£(x+ 1,§m) <f

Thus, if we write m for max[x,frm},

; x+1
£(x,5,) < £o8 ()
<5 By
= flm(b AL n)
h i‘1-an Z(.’baﬂ)()
- <r (ha+2) (n)

We have thus proved the following for n = O

(8.2) Lemma. If f is defined by (n+1)-recursion from

'gl RERE]- S and if the greatest depth of the formulas

;..

8718, 8S well as all the constants of Fl‘ X ,Fan,,_l,
(ba.+t+2)

A ,an+1 defining £ is a, and f(E% bounds all of
then f is bounded by f s Where O = B+ @’ and
t =t (8).

Proof. The basis n = 0 has already been done, so we will assume

the lemma for some n 2> 0 and prove it for n+ 1. Thas, a function
f(x,xo,. . .,xn,ﬁm) is being defined by (n+ 2)-recursion. For each
fixed x, let f(x)(x ,...,xn,irm) = Px,x ,...,xn,frm). On examining

n+l

the 2n+2 equations defining f, it is found that the first 2 of

them constitute a definition of f(o) by (n +1)-recursion, for these

el

A

equations specify the valuc of f(x,xo, ,x ,y) when x = 0. Thus
('ba+t+2)(),
Liptaft

where m is max(xo,. 1%y ,Y }end t = tn(B). Suppose for some x

by the induction hypothe51s, (0)(x0, ,x ,y) <

that

£ (x X) < ((ba+t+2)x+1)
() %07 Va) S pin) -

Again, by the definition (7.1) of n-recursion, f(x+1) is defined by

(n+ 1)-recursion from g),...,g, and f(x) . The depth of the defining

formulas is still &, and by (3.4.viii) and the induction hypothesis

for ByrersBys the function

((batt42)x+1)

148+ x+1)
bounds all of CAERR 18, f(x) . Thus, now letting m be
max (x +1,x0, “ee ;xn;im}:

' ((ba.+t+2)x+]'-a.+t+2)
£lar) B0 P V) f1+B+ﬂP(x+2) (2

((ba,+t+z)x+3) &
1+ (x42) 2

IA

A

Thus, we have shown where m is ma.x{x,xo, . .,xn,j}m],
i, .(ba.+t-|:2)x*1)
T(X X)0ee,;X < (
(k5% - 1% V) S 1+B+aP(x+1)
{(ba+t+2)i'3+ n)

l+B+a}_‘ (m+1)

(m)

(1)

1A
=

((ba. +t +2)11+21

1A

f1+13+a}'l (m+1)+1

IA

1+&l~<n sA

1%

n . (A) where A = (ba.'+t+2)E+2

D

g, o A i € e s g
Now if B = bs+ + o bn+l+ +a)'bo, let B* =
n+l

a)“g-bs o W 'bn+l' Thus B' is the least ordinal so q = B! +r.un+1
m+2

2

and 1 +p +a(ba +t +2)%%% = 1 48" 4ot ((ba +t +2)02 +b,). Then

f(x)xoi v an.!ym) S fl"‘ﬁ""ﬂp'(ﬁ'fbn)(A +l.’n)

n

n+2
fl_'a((ba+ t+2)- "4 bn)
(batt4b +2)
= T (m)
But since tn+i(5) = t+bn by definition of t, this proves Lemma (8.2)
and thus Theorem (8.1).
Unfortunately, the somewhat more attractive conjecture that fép) ’
bounds the functions of R(x fails. This matter will be discussed
after (8.3).

(8.3) Theorem. For eacha > 1, f

14 € Ra.

n+2

Proof. Consider the function hﬂ' ot N0 >N defined by (n+2)-
2 .

recursion from fﬁ:

hB,n(EO" e :En:o) =1

hB'n(O, ce,0,x 4+ }) = fB(x+ 1}

hﬁ’n(go,...,§n_1,xn+1,x+1) = By n(8gre-r8y X ((8gs e s 8y 5% +1,x))

By (8- orbyp Xy g #L,00x41) = Mg (Boeeo)b oo ,xed,xel)

(x0+l,0,...,0,x+1) =h X+1,0,...,0,x+1)

Be,n B,0{%0

R
1Y

Each equation containing a £ is schematic in thut it represents all
the equations obtained by replacing gi by "xid-l" or "0". We show
that wvhen p is of the form f = B'%-UP for some B', then

n . o
hﬁ,n(x ,u..,xn,x) = fB+Y(x)_where Y =@ %y + +e- +@-x . The in-

duction is on y. If vy = 0,.so xEE g BIX . 0, then hB n(0,...,0,x)
i 2

o]

= fﬁ(x) by the first and second equations. If 7y is a successor, so

Y=5+1 where 5 = aP-xo LR 99'xh1 the third equation applies:

hﬁan(§0, s :gn_l:xn"'l:x"'l) 3 hﬁ,n(50; me ’gn-l’xn’ ﬁ,n(got'"; gn_len"'l:x))

By the induction hypothesis for & and the first equation, we have

hB,n(xo,...,xn_l,xg-+1,0} =1

hﬁ,n(xo"'"xh-l’xn+1’x+1) = fh+8(h5,n(x ,...,xn_l,xn+1,x))

But for fixed x yer s Xy these are the same equations defining fB+6+l

0
= f_ ., by Definition (3.2). Finally, if v is a limit, so Yy =B +w

B+y ;
n - -
vherem<n and § = WXy + oere AT 1-xm_1-ruP m-xm, we have

hB,n(xo,---‘,Xm_l,xm'l-l,o,- ..,0,0) = 1

hB’n(x ,...,xm_l,xm+1,0, sea ,O,X'l'l) =hﬁ,n(xo,...,Xm’l,xm,x-l-l,o, [,0,x+1)

Combining the equations and using the induction hypothesis for &,

hﬁ:n(x res oKy X050 -50,%) = fﬁ+8+up'm'l-x(X)

= fM(x)

by Definition (3.2).

n-m

A5

Now consider the equations

£(0,y) ='y+1

f(x+1,y) = f(x:f(x:}f))

which are an instance of l-recursion. We show that f(x,y) = y+2x.

This is clearly true for x = 0; if it {s truefor X,

f(x+1,y) = f(x, £{x,¥))
= £(x,y)+2%
= y+2x+ o
= v+ zx+l
So f €@, and f(x,0) = fa(x).

W
Now let O be an ordinal, 1 < & < w, and assume that fl+f5 € G.B
for 1< B <@ IfQis a successor, @ = B +1, then £, 18 obtained

from £ by iteration (Definition (3.1)), which is a special case

1+f
of l-recursion, $o f, g € Ry If @ is a limit ordinal, let P be the

n+l

least ordinal so @ = B+w . By definition, is obtained by

hl+B,n
{n +2)-recursion from f1+!3’ and so by the induction hypothesis,

hl“'ﬂ,n € Rl_i_ +1o But hl+B,n(x,0, . .,O,X) = fl+B+uj1.x(x) = flm(x) »

8o by closure under sub'stitixtion,lfl_*a € Rt! This concludes (8.3).

The rather unpleasant need to use fl e to bound R, rather than

f

o Stems from the difference between l-recursion and primitive re-

cursion. The equations above,

g

wy Ty

£(0,y) = y+1

f(x+1,y) = £(x, £{x,y))

which meke f(x,y) = y+ 2%, are nol an instance of primitive recursion,
because in the latter scheme the parameters must remain fixed,. not
variable, in the defining formulas. In other words, the schema of

primitive recursion mey be written

f(o.’&m) = Fl

fx+ l,}}m) = F,

whgre Fl- does not contain f, and where every instance of f in F2 is
of the form f{x ,frm); here l-recursion woyld have f(x,'i‘m) where 'i'm
are formulas. The difference is between "nested" and "unnested"
formulas. Thi's matter will be discussed more fully in Chapter V.,
Notice, incidentally, that if ¢ > ®, 1 +0 = C.

The sbove results give

(8.4) Hierarchy Theorem for f,. If a >, Ra o RB:

Proof. Immediate by (8.1}, (8.3), and (4.6).

§9. The task of this section is to establish the computaﬁion—time
closure of @a for each C > 2. The path we take is essentially the
same as that followed for Eu: show thet the computation time of
each function in R& is bounded by another function in Ru, and then
find a function in Rz which mimics the actions of an arbitrary
Turing_maéhine for a given number of steps. We base the proof

for the first half of the result on the use of deductions from the
formal recursion eguation defining a funétion in Ra. This meth?d
is by no means the only way to carry out the proof, but it seems

to offer the fewest technicsl difficulties and will be applicable

&3 well to later work.

(9.1) Theorem. For each @ < «°, if f ¢ Ry, then £ can be
computed by a Turing machine in such a way that the
number of steps required to compute f(in) is bounded

by f(P)(max[x })} for some p.

Proof. We will show that for each f ¢ Ra there is & set of equations

E defining f recursively and a nurber q so that f(q)(max[x 1) bounds

the number of equations in a certain deduction of the equation

'f(v(xl),...,v(xn)) = v(x) from E. Then we will arrange for a

Turing machine to perform the deduction and conclﬁde the theoren.
IffeR o? then f(x) = gteor f(x } = ¢ for some constant

¢. Thus f is definable by one of the equations

f(x) :;_ saet

-1

/) ¥

or

.f(;cn) =NON LY

A deduction of the equation f(v(xl),.,.,v(xn)) = v(x).simply con-
sists of the n+1 equations vhich start with the original defining
equation and have the variables xl,f.,,xn_successiveiy replaced by
v(xl),...,v(xn). Thus the number of eduations is bounded by a con-
stant, n+ 1, and a fortiori by f£n+l)(max[in]).

Now suppose f € &, where @ > 1. If f € R, because f € RB
with P < ¢, the claim is trivial by Lemma (3.4.viii). If £ is de-
fined by substitution from functions in ﬂh, the proof follows from
srguments similar to, but simpler than, those used for the next
case. We omit the details.

There remains the case in vhich f is defined by n-recursion

from functions in RB, where ¢ = B+¢qu'fbr some n > 1. We have

the 2" eguations
Lo & ‘ &
f(gnaym) = I‘j 2 1<j<g2

where each equation is obtained by allowing each §i to be either

”xii-l" or "0". The functions g,-..,8, apnearing. in the formulas

Fj dre all bounded by fggé.for some g By Theorem (8.1). Define for
.]
each i, 1 €1 <r, a function {Ei.N -+ N§ such that {gi(xl,...,xni)

bounds the number of equations in the deduction of the equation

g, (x)) -+ W) = ¥(x).

-1

-

How do we deduce the equation f(vixn), v(ymS) = ¥(x)? (We hove
written vixns for v(xl),...,v(xn).) First select the applicable

equation on the basis of which X; are zero:
f(gn!ym) - F.j
and then substitute the desired numerals for the En to get

£(v(x), Wy,)) = v(Fy)

where v(F J) is F, with a numeral substituted for each corresponding

J

variable in F This requires n+m+ 1 equaltions. Then replace one

j°
of the innermost function letters by the numeral which is its value.
This will require a subsidiary deduction of the proper equation.
Then, similarly, replace one of the remaining innermost function

letters by making a second subsidiary deduction, continue until

all the function letters are removed from v(Fj); we then have
£(V(x), V(y,)) = v(x)

for v(x) a numeral. Thus the total number of equations is no

more than
n+m+1+2[-r,hk(Tl,- : -,Tsk) +1]

eguations, where the sum ranges over all literal appearances in Fj
of a function letter hk in the form hk(Tl,...,Tsk) and where Tl,...,Tsk
are formulas. Notice that we include f itself in this census of

function letters, so terms of the form Lf(Tl""’Tn+m) will appear

I -22

in the expression above; this function letter represents the number
of equations required Lo deduce f.

Thus we arrive at the 2" equations

These define the function Lf by n-recursion from 8yt 18

4L ,...,4_ , f, and addition. EBach 3 is a formula n+m +1 +
Y g, 3
E[abhk('l‘l,:. . ’Tsk)+ 1] like the one derived above. Now consider the

following modified equations:
‘lﬁ(gn.vym) = 23

Here 2‘.; is the formula arrived at by replacing each occurrence of
(1 T..) b f(qi)(T 4 +++ 4+ T_), where is chosen so the
gi l)' ey si y l+B 1 Si ?, qi

latter function bounds the former; likewise, Lgi(Tl,...,Tsi) is re-
e (py)
placed by its bound f'l +8

is guaranteed by Theorem (8.1) and the induction hypothesis for

(Tl + o 4 Tsi). That such bounds exist

&81, . ,‘Lgru

¥ v i o3 _S_‘*
= 5 by 'f(Tl’)T, +m) By the way in which the formules y were

defined, 4% is thus obtained by n-recursion from the functions x+ ¥

f
. * (a)
; so by Lemma (8.2), Lf is bounded by f'l+ﬂ+u)n"1 for some q.

Finally, replace each occurrence of f(Tl jeee, Yin

n-in

and fl +B

o= B2 - %= X, et =
But we also have Lf(xn,ym) > Lf(xn,ym) and {,f(xn,ym) > f(xn,ym), for

*
'{'f

Lf and f, and the formulas defining L; are of equal or greater depths.

1s defined from increasing functions which bound those defining

Thus the deduction of £(V xni, viymS) = v{x) contains no more than

(a) = e
fl+B+<.bn'1 (ma.x[xn,ym]) equations.

Next, it should be clear that there is a ¢ so the t-th equation
: : -tmax X,y)
in the deduction will contain no more than ¢ . *n+¥m

characters.
For substituting a Aumeral v(x) in an'equation can increase its
length by at mosti d-v(x) for some fixed d; and each numeral which
is substitutea is either one of the in"im or already appears as
part of an earlier equation. Since.fa(x).= 2*, there is an s 80
the totsl number of characters in a deduction, namely

() i ore s
9 (max (3,7,)) iamex G dyd nexiy)

is bounded by fgi;-

Now a Turing machine can certainly carry out the deduction

we have outlined. Given input in’ iﬁ’ it simply forms the equation
f(in,ﬁm) =Fy snd proceeds to derive the succeeding lines of the

deduction exactly as suggested above. Even if none of the deduction

is erased from the tape, the total number of tape squares used

need be no more than

(&) (maxc(x_,7
Xy E DY .-tym+m+f1_'a(ma.x[xn,3’m])

Theq by exactly the same argument as that given in.(S.S), the total
number of steps required is no more than fii;(max[in,in]) for some
P, 80 long as & > 1. Even if a. = 0, the theorem remains true; for
suppose f(in) = x;+c. Then f can be computed as follows: move Lo
the left over the representation of XpsereaXys erasing the tape,

until x, is reached; pass over X, and then add ¢ -1 "1"s to its

_Tﬂ -

left. Continde to the left, erasing Xg_qrerea¥ye Then move right
agein until x;+ ¢ has beeg passed, and stop. The total number of
steps is no more than fgp)(max{in]), for suitable p. This con-
cludes the proof of Theorem {9.1).

A fuller discussion of the use of Turing machines to carry
out deductions from recursion equations is given by Kleene d;; §697;
readers who mistrust our sketch of such mechanized deductions should
consult this work.

Theorem {9.1) constitutes half of the proof that ﬁb, o> 2,
is.compgtation time closed; thg other half follows from the next

theorem.

(9.2) Theofem. et ™ be a Turing machine which con-lputes
the function f£:N" - N. Then there is an Rz function
T%:Nnﬂ -+ N with the following prbperty: if s exceeds
the number of steps required to compute f(:-cn) using m,

then f(xn) = 'I.‘Mm(xn,s).

Proof. This proof can be mede by giving a direct construction of
TMsm’ but a simpler method is to show that f\’.a > .Ea for a < w, a.n.d '
then use Theorem (5.1) to conclude (9.2).

As we have remarked, £b = Rb’ for each function in both classes
can bg written in one of the f?lz;mas ;‘:fcn) = xi+c.: or f(i'cn).= ¢ for

some constant ¢. Now suppose 1;0—‘_2,% for some ¢, 0 < @ <, and

let P € L be a Loop program with _I}_g_g(z) = (xl,...,xn].

=

[N

w0

For each 1, 1 <1 <n, let fi:Nn - N be the function computed
b'y (P, }'(n, Xi)- By definition, each f, € £ . Now consider the

function

s :
fi(xn,o) = X

f:(;tn,z-l- 1) = f;‘(fl(;{n):“ -an(in)xz)

which is defined by l-recursion from fl, e n’ by the hypothesis

* -
on fl,...,fn, fi € Ra+l' Let z be the program
100°(1) Z
4
END

Now we assert that f':(in,z) is the function computed by (3*,xn,z,xi).

This is certainly the case vwhen z = 0; for then ’1:* is equivalent to

the empty program. If the assertion is true for initial contents of
]

% = z, let the initial contents of Z be z+1, and the.initie.l contents

of X L be :'cn. P* is thus equivalent to

&R

P .
~Z N

v

The program P leaves fl(:'cn) ;L ,fn(in) in registers Xy,...,X ; and
by hypothesis, if the contents of in are i’n at the beginning of the

execution of the program Ez above, then }:z leaves f';(yl,...,yn »2)

in register xi. Thus when the initial contents of Z are z+1, P*
e (2 e -7 : i z
leaves fi(fl(xn),..._,fn(xn),z) = fi(xn,z+1) ih register X;; so
(px,)-(n,Z,Xi) computes f*.:(;cn,z). If register % is one of the X,,
o Lo 1l
say 2 is register }(J, then (gﬁ,xn,xj,xi) computes fi(xn’xi)'
The foregoing establishes our claim that Ea g_ﬂa for g < W

for the functions of Sl',a computed by programs of the form

Loop(1l) X
Q

"~

END

When we have a program of the form

E
2

the claim follows from the closure of Ra under substitution.
Thus for q < , .C.a c Ra; in particular by Theorem (5.1), the
desired function TM_ € R, and Theorem (9.2) is proved.

Theorems (9.1), (9.2), {8.1) and (8.3) give immediately

(9.3) Theorem. For each a > 2, ﬁ‘,a is computation-time

cloged.

,zj_;’-’f ; . ' ﬂ]—lﬁ

Iv. IDENTICAL HIERARCHIES

§10. The following very important result is now straightforward.
. w
(10.1) Theorem. If2<C<w, R, = £1+a

Proof. If £ ¢ Ry, the time required to compute f using a Turing
machine is bounded by f(p) for sore p. By (4.4), ?(p)(x + . 4-xn+l)

> f(p)(max[x }), ana f(P) + e+ an-l) € £, Then by the com-

putation-time closure of L 140 fe ﬂ o Conversely, if f € 51«3’
the computation time of f is bounded by f{i& for some q; but

(q)(x + 00 4 xn) 3 Rﬁ, 80 by the computation-time closure of Qa,

fe ﬁa. . !

Notice that this gives

Proof of Theorem (4.5) concluded. Ve showed fl € £, directly;
f, € £, follows by (6.9); (8.3) and (10.1) give £ € &, for & > 3,
yielding the theorem.

Theorem (10.1) follows from just two important characteristics

of each ;LHI and &,: First, each class (for & > 2) is substitution

~and compuvation-time closed; second, the two classes contain functions

of the same size, in that any function in the one class is bounded
by some function in the other. Thus it appears that any class of
functions which has these two closure properiies is essentially

characterized by the size of the functions it contains.

This same approach.using computatiog—time closure is applied
below to Lhree exanples of other hierafchies mentioned in the
literature; we show that each of these hierarchies.is identical
to a portion of the £, hiersrchy. Not all the theorems are proved
golely on the basis of computatioh—time'c}osure ~- sometimes ad hoc
methods are easier -- but mostly we maﬁe use of this powerful closure
property. ‘

A hierarchy similar to the Ru hierarchy where G < W vas de-

>~
fined by Axt [A3-A2]). We have

(10.2) Definition (Axt). For each @, 0 <O <, let P,
be the smallest class of functions satisfying
" (1) fThe successor function s(x) = x+ 1L and the
jdentity function i(x) = x are inf,,
(11) 1f > B, P, _:_aPﬁ,
(1i1) P, is closed under substitution,
| (iv) If f is defined by primitive recursion from

functions g,h ePB, then f ¢ @, where & = B+1.

It is obvious that P, the class of primitive recursive functions,

is precisely

U R
a<n

See Definition (6.10). The difference between the Ra hierarchy for

@ < ®and the Py hierarchy is that where &, is defined using 1-

1J-1

T W w

' recursion, Pa {s defined using the less general schema of primitive

recursion.

Tt should be clear intuitively that the function T - which
mimics Turing machines is primitive recursive. In fact, this re-
sult follows from proofs of the Kleene Normal Forrfl Theorem; see,
for example, Kleene [:I’(-, §Sé] or Davis [g, p- 63]. This fact alone
would put TM L in P, for each a > ao , vhere 050 is a fixed ordinal
less than . The next lemma, therefore, is of interest only be-

cause it shows & to be no greater then 4.

(10.3) Lemma. The function TM_ of Theorems (5.1) and
{9.2) is in £y Also, each function used in the

definition of TM, is bounded by fgp) for some P-

Proof. The proof of the lemma consists merely of an enumeration
of the definitions of wvarious i‘unctions,.concluding with that for
TMER; this together with a verification t?lat the function so enumer-
ated have the properties ascribed to them. The vérificq.tion is left
mostly to the reader. Instead of giving the details here we segre-

gate them in §11, since, as remarked above, the real content of the

lemma is already obvious: that 'I‘M'm epa for some O < W, and there-

. fore that TMm can be defined using functions bounded by f((xp) for

some O and p.

(10.4) Theorem. For 4 <@ <, £, =P.

Proof. By Corollary (6.9) and the closure of £, under substitution,
f;z DP, for all @ > ®. On the other hand, since f) € Pl and £, .

is defined from fa by a special case of primitive recursion,

£ epa for each O 2.1; thus by (6.3) and (10.3), £, _:}Ea for
h<ocw, :

We remark that the first half of this proof, that £o 2Py
could. have been shown as follows: prove that each function in Pl is
bounded by f:(Lp) for some p. Then by Lemma (8.2), each function in
Py 18 bounded by f((xp) for some p. Finally, Theorem (9.1) applies,

& fortiori, to Pa as well as I?u, since primitive recursion is a
special case of l-recursion; thus each function in Pa can be com-
puted in fewer than f((xp) steps. Then by .the computation time closure
of 'Ea' fo 2Par

Other hierarchies may be obtained by starting with a fixed set
of functions q.nd elosing under substitution and limited recursion.
The next example is essentially the one studied by Robbin [}aﬁs,:]; his
initial function was _2x rather than fo, but otherwise he used functions

like fa.

" (10.5) Definition (Robbin). For each ordinal a, a < dfY,

let Ea be the smallest class of functions Isatisfying

(i) Ea contains the successor function, the function
max(x,y}, and fa,

(11) é',a is closed under substitution,

{111) g, is closed under limited recursion.

<

(10.6) Theorem. For 2 <a < wm, é',a = S'Sa.

Proof. Say o > 2. Then S‘La contains all the starting functions of

L
8a, and by\QBW, Sﬂa is closed under limited recursion

and substitution. Thus S‘,a o] 80. Conversely, if f ¢ La, by Theorem

(6.3) £ may be written
f(in) = Mn(e,;cn,fép)(ma.x(xl, - ,m.aJF(xn_l',xn) SE))

for some e and p. Since Mn is obtained by substitution from TMm

for sc.>me M, by closure under substitution and Lemma (10.3), TMm € 82;
for all the recursions defining T™™ in (10.3) are bounded by fép) A
Then by (6.3), f € €,

li
Grzegorczyk [@) studied a similarly defined hierarchy

[Sg: o < w}. His starting functions, however, are somewhat different.

(10.7) Definition. For each @, 0 < <, let g Dbe the

function defined as follows:

Bo(xsy) = y+1

g (x,y) = x+y

gy(x,y) = (x+1)-(y+1)
For a > 2,

8y41(07¥) = g (¥ + Ly +1)

B (X 15Y) = gy (%585, (x5¥))

L5

e

We remark that these functions were somewhat simplified by R. W.

Ritchie [RVR2].

(10.8) Definition (Grzegorczyk). For each a, 0 < a <,
let Gg' be the smallest class satisfying
(1) 6g contains g, and ga,' :
(ii) E',g is closed under substitution,
(iii) E',g is closed under limited recursion.
(10.9) Theorem. For 2<a<w, £ = ch1+1'

Proof. By definifion b

g5(0,¥) = (¥ +2)?

g5(x+1,¥) = g5(x,85(x,¥))
Abbreviate (y+ 2.‘)2 by k(y). Then we assert that
. x
2
g5(x,y) = k2 (y)

The equation holds when x = 0; if x > 0,

E;S(X;E:s(x:y))

’ % X .
= %@ lZ)y

gz(x+1,y)

x+1,
") (y)

k

Now k(y) = (y+2)% < y” if y > 2. Therefore,

X
xNy) < yl'z

<tfPxey) ir y>e

7
Then fg)(x-i- ¥y} > k(x)(y) for all x, y. Thus k(x)(y) € 52, for it
is definable by limited recursion (in fact limited iteration) from
functions in .L',z- Then 85 € ﬁz by closure under substitution.
Now for 3 <a<® ga-l-l

By Theorem (10.1) and the definition of ﬂa, Boay € Loy This

is obtained from By by l-recursion.

immediately proves .Ea E) SG L since .E contains the starting
functions of &&1 and has the same closure properties.

Now we show gwa(x,y) > féx)(y) for 1 < a < ®. For

g5(0:¥) = (y+2)2 > £{O(y)

83(}“‘1:?) = 83(3‘:83(}(:3'))
> £ (g, (x,1))
> £{2)(y)

> f](_x+l)(y.) if x>1
2 2 (1)
Even if x = 1, gs(l,y) = ((y+2)°+2)° > £ (y). Forl<a<w,

Bsz(0Y) = By (y+ 1,y +1) 2 f(y+1)(y+ 1) > f(o)(y)
8ys3(1Y) = 8,,2(0,8,,5(0,¥)) > f(y l)(y) > f(l)(y)

Bouz{X+ 1Y) = g <(x,8,,5(x,¥))

(x)
. fc(xﬁ. afl(y)

éﬂl)(y) if x>1

So in particular, ga+l(x,1) > fa(x). Since clearly ga_l_l(x,y) >
max(x,y), there are functions in Eim which bound fa(max(x,y)).
But since by Lemma (10.3), TH, € 6(.}, by using Theorem (6.3) we have

eg!+l > .L'.a for 2 < o <®w; this concludes (10.9).

V7

§11. The major purpose of this section is merely to prove Lemma
(10.3), vhich proof is, apparently of necessity, somewhat long-
winded. A minor purp5se is to demonstrate that a few other functions
are in various classes’Pa, go that these functions may be used in

the sequel without further proof of their claimed properties.

Proof of Lemms {10.3). The construction is conceptually identical
to that of (5.1), except th;t there a Loop program was written, and
here a primitive recursive function is defined. The approach here‘
constructs 1m%m directly, in contrast to thul of Theorem (9.2), which
showed that 1-recursions could perform the functions of ILOOP(1) in-
gtructions, and concluded the theorem 1ﬁdirect1y via {5.1). We
remark tﬁat this latter method may, in faci, be used successfully

to prove (10.3), bui that without some complexities it succeeds only

. p .
in showing that TMm.e 5
The following functions are all in P]:

xX+0 = x

x+(y+1) = (x+y)}+1

For each fixed n, n-% = X 4 **+ + X
0-1=0
(x+1)*1L = x

p(x,0) = x
p(x,y+1) = 0

1°x = p(1,x)

/2L

We also write sg(x) = 1°x and sg(x) = sg(sg(x)).

Now if Byo 18y hl, ..«,h are- éiveri functions such that at

r+l
most one of CAERE "ér is zero for any argument, the function f de-
fined as follows is obtained from the given functions and x+ y.

s&, and p by substitution:

hl(xn) if glgxn) = 0
f(xn) = hr(xn) if gr(xn) =0
hr +1(xn) otherwise

Here f is said to be defined by cases. We have

£(x) = p(hy(X),8 (X)) +- - +p(n(x),e(x)) +

p(h_,, (X),56(g, (x)) + -+ + (g, (%)))

Thus Pa for @ > 1 is closed under definition by cases. The following

functions are all defined by a single recursion and substitution from

functions already defined, and thus are in £,

2
x0=0
x(y+1) = x'y+x
x20 = X
x2(y+1) = (x2y):1

[x-y| = (x2y)+ (y=x)

wWx,y) = (x+37)%+ x

For each fixed n > 0,

The following functions are all defined by a single recursion from

functions already defined, and thus are in Ps;

m(0, y) = 0
' 0 if |rm(x,y) -l-l-yl = 0

m{x+1,y) =

‘ rm(x,y)}+ L otherwise
ofy =0

xfy +1 if |(x/y+l)-y-x-l

(x+2)/y = _

: x[y otherwise
Jo=o0

Vx+1 if |(J5<+1)2-x-1 =0

Jx+1

J;c * otherwise
m(x) = x ¢ ()
1r2(x) = Jx = wi(x)

The functions T, Ty, T, are pairing functions with the proper-

ties 1(m(2), my(z)) = z, m(x,¥)) = x, m(+(x,¥)) = y. Define,

using substitutions from already-given functions,

=< .
et ¥ a3

(x)g = m(x)
(x), = T Ty(x)
(x)g = mmymy(x)
(x)R - néuéwé(x)

E(x) ,%,%5,xy) = T(xy, 7%, 1(x5,%)))

These last five functions provide the basis for the function
gbout to be.defined which mimics & Turing machine. If xQ, X1 Xgs
X respectively represent the state of the Turing machine and its
tape to the left of, on, and to the right of the scanned square, then

E(xQ,x ,xS,xR) will represent. the whole current situation. Conversely,

L
if z represents a situation, (z)Q represents the state in that situ-
ation; similarly for (Z)L, (z)s, (z)R. Let the Turing machine M have
u symbéls Sgrt a8y and v states Qpre++2Q, 7 88 before, the tape
will be represented by a number which, in a base u notation, is an
image of the éorresponding portion of the tape.

Now let Qm§z) be that function, defined by cases, which is J
whenever the quintuplé (q(z)q, s(z)s, 812 d; qj) ig a quintuple of W;
Qm5z) = (z)Q if such a quintuple does not appear. Likewise let Sw£z)
| be the function which yields the next symbol to'bg placed on the
scanned square, and et Dw£s) be 0 if Mhas halted, and 1 or 2 re-
spectively if M moves left or right. It should be clear that for

each machine m, 8 , and D_ are defined by cases, and hence by
w n

substitution, from functions already given. Now define

\&)

f
2 if n‘m(z) = 0

Step,(2) = { BlQ{2) (2 fu,mi (2 ,u)u () S, ()
' if Dm(z) =1

B(Q () 0 () +5,(2),mn((2)gu), (2)p/u)
if D (z) =2

Thus Step!;R € PS and if z is the representation of a situation,

Step m(z) is the representation of the next situation. Now say

Resultm(2,0) = z

Resultm(z,5+1) = Stepm(Resultm(z,s)

Then Resultm(z,s) € Py; it is the situation resulting after s steps

have been performed by M when started with z. Define for a parti-

cular u

Ones(b,0) = ub+1

- Opes(b,x +1) = w0 (b,x)+1

Ones € Pz, and when Ones(b,x) is written in base u notation, it con-

sists of the digits of b followed by x+1 "1"s, Now let
Inputn(xn) = Ones(u-Ones(.. .u'Ones(O,xl), .. 'xn-l) ’xn)

80 that, for example, Inputa(xl,xz) consisté, in base u notation, of

x.+1 "1"s, followed by O, followed by x

) +1 "l"s. Then say

2

Initia,ln(in) = E{0, Inputn(:‘cn), 0, 0)

-

Initialn(in) is the encoding of the initial situation of M with in-
put X,

Then define

Output*(z,0) = O |

1+ Output*(z,x) if Irm(z/ux,u) -1 =0
Output*(z,x+1) =

Output*(z,x) otherwise

Output(z) = Outpul*(z,z)

Output ¢ ©,, and Quiput {z)} is the number of "1"s occurring in the

31

base u representation of z. Finally, define
megxn,s) = Output((Resultm§xn1tia1(xn),s))L)

TMm is +the dlesirec_l function. It should be obvious that all the
functions used in the definition of TM_ are bounded by fgp') for some
p except perhaps Resultm. Even this is bounded, however; for Resultm
ig in each case an encoding of four‘ numbers. The encoding is a poly-
nomial in the numbers encoded, and the numbers the;n.selves represent
tapes. But by the representation of a tape we have used, the size of
the encoding of a tape is exponential in the length of the ta.pe; a.;id.
this length is linear in the number of steps taken. Thus Resultm
grows exponentially at worst; this makes it straightforward to show
Result - is bounded by fép) for some p, since fz(x) =.2%. Finally

TMam ePu, so (10.3) is proved.

v

§12. Summarizing Theorems (10.1), (10.4), (10.8), and (10.8), we

immediately
il) y . — =3 - — G
(12.)) Theorem. For 3<q <, £a+l = i?.a = Pa+l"€a+l_ 8a+2 .

Forz<a<d’, g =@ =8¢ .

Therefore each of the theorems of §6 discussing .t',a applies, mutatis

mutandis, to the other c¢lasses as well. The following characteriza-

tion is alf;o interest.

(12.2) Theorem. For a > 2, .Ca is the closure under substitution

of the (finite) set of functions (Ml, Ty My Ty, fa}.

Proof. 7, M, Wy are the pairing functions defined in §11 with the
proper{:.igs T(wl(z),vz(z)) = 2z, Wl(T(x,y)) = X, Tra('r(x,y)) =y. §u1
shows these functions are in 82 and thus in .ﬁa for @ > 2. Also, M)
and fa are in .E.a by Theorems (5.2) and (4.5). Therefo.re, the closure
of these functions is included in .ﬁa. Now if £:N" -+ N is in .(',a, ‘there
is an £:N > N so f* € £ and f(:'cn):- £y, %y, - -, (x,,0) . 2)))5

simply take £*(x) = f('n'l(x),rl'frz(x),...,leén-l)(k)). Then by Theorem

- (6.3),

£(%,) = My(e,w(xy, ey 20,00), £ P (st ,0))

for some e and p, since t(x,y) > max{x,y}. This concludes (12.2).
Theorem (12.2) answers in the affirmative the question posed by
q
Grzegorczyk [&, p. 41) whether his classeseg were definable by sub-

stitution from a finite ;et of functions.

- T\T)(\f)
&

(12.3) Definition {Csilleg-Kalmir). The class € of

elementary functions is the least class such that

(1) € contains xty, x=y,
(11) € is closed under substitution,
(111) € is closed under the operations of limited
sum and limited product: the operations which

: -+.N into s:Nn+l - N, where

take g:Nn+

s(k_,y) = %,_ (% 1)

and into p:Nn+1 -+ N where

p(x »¥) = 1§0 g(x ,i)
Crzegorczyk was able to show that his class Gg is 1ldentical to the

elementary functions [G, Theorem 4.4]. Thus, immediately,

(12.4) Theorem. £, = g.

Although the foregoing theorems show that all the hierarchies we
have defined eventually become identical, we have not discussed much
the relationships of the variaus classes at the bases of the hier-
erchies. Figure (12.5) depicis the known set-theoretic inclusions
among these classes. The figufe is to be read as follows. A vertical
double line between two sets indicates that the set higher on the page
is knowm to include properly the lower set,.and that the proof of the
inclusion is either given explicitly or follows immediately from ex-

plicit proofs. A double line one of whose members is dotted means

gt

i
.

m— e

P e

P mma A N e — Sk — b B T

——— e mn e e — A — e —

G
Ly =Ry =8, =08 = Q.
P3
L i)
CEy =8 =8y '
i f,
& P2 :
G
g | i
2 : (x +1)2
¢
i l ;
l &)
Py
G
% =§%>
| £,
[£0 = Ro =%

FIGURE (12.5) Set-theoretic Relationships.

Wiba

S

that there is ‘a proper inclusion between the two sels but that we
withhold the proof. The 6n1y such situations’ which require much
thought are to show Pz o 'E'l and 152 > Pz ; especially the latter. A
single solid line means an inclusion shown to exist but not knowm
to be proper.

The horizontal dashed lines separate the sets into strata ac-
cording to the functions whose rate of growlh characterizes the sets
in a stratum. Since each set in the stratum of f ineludes f, and
each function in such a set has a p so f(p) bounds that function,
it is impossible that a set in a lower stratum should include, proper-
lj or not, a set in a higher stratum. However, the inclusion relation-
ships not explicitly indicated among the sets of a given stratum are
unceri;ain. I.conjetl:ture that all the sets shown in the figure as
incomparable are in fact incomparable, except that it seems likely
that Rl < K-

Graqting that sets in different strata cannot be equal, why are
81l the sets in a given stratum not identical? Tlfe angver, oi course,
lies in their failure to be computation-time closed. This failure
comes about in two ways, corresponding to the two parts of Definition .
(_G.h) . 'First, a function may fail to be in a class although the class
contains a function bounding its computa.tiqn time. This occurs be-
cause the particular functions TM@R are not in the cless; such is the
case 1rn'.th, for example, Po, Pl, F‘z and (perha.ps) &"3. Second, there
may be a function in the class whose computation time is not bounded

in the class; this occurs with 80 and Sl.

<3 -\
©

\.;,:I

Conversely, éiven that above a certain point all the classes
become computation-time closed, why should the hierarchies eventual-
ly become ideniical? After all, l-recursion, for example, seems a
considerably more powérful operalion than primitive recursion: as we
ghowed, with a single l-recursion the functioﬁ 2% can be defined,
vhile any function defiﬂed by a single l-recursion is bounded by a
1inea£ function. This fact mighl lead us to suspect that one
l-recursion was worth two primitive recursions,and thus to the con-
Jecture thét s%.a = ﬁa for o Z-Qb. The reason this does not occur
is that while l-recursion is more powerful than primitive recursion
in terms of the size of fﬁnctions definable, the functions definable
by l-recursion ére iarger by a fixed amouét -- in fact, only exponential-
ly larénr. Once the class 5% is reached; functions of exponential
growth are available and the advantage that l-recursion has can be
overcome by using substitution.

As we remarked in §7, there are variant definitions of the schema

of n-recursion. Robbin [JR] would allow a function f to be defined by

f(:“cn,a'rm) = Fy if (:’cn) = (o,...,oj
f(x,¥,) = F if (x) # (0,..50) |

go long as each occurrence of f in F has the form f(ih,ﬁm), where
Tn, §m'are formulas and (in) > (ﬁn). We rejected this scheme be-
caugse it is in general impossible to determine by examination whether
(in) >-(Tn) holds. On the other hand, perusal of Theorem (8.1) indi-

cates that the only fact actually used about the oceurrences of

SR

the function being defined is thal demanded by Bobbin's definition:
namely that the n-tuple of values occurf;hg'as.thé arguments of the
definiendum on the fight—hand side shqgld be lexicographically less
than ils arguments on the left. Thus Theorem {8.1) holds as well

if the definiéion of ﬁh is modified so that Robbin's? rather than

our, use of the term n-recursion is used. Theorem (9.1) likewise

 does not depend on the particular form of our definition, but goes

through as well with the more general one. (Actually, (9.1) needs
to be.supplemented with a little more argument, but we omit the de-
tails.} It follows that the modified.ﬂb is identical to the actual
@a, at least for o > 2. (In order to make recursion possible at all,
the initial function x:1, at least; has to be added. Otherwise it
would 5e impossible to get off the ground, siﬁce there is no function
r € Ro such that x > r(x).)

On the other hand, neither do more restricted definitions of
n-recursion affect the results. For example, we have allowed what pét;
calls "replacement of parsmeters™. In other words, in the schema
of n-recursion f(in’ih) may be defined in terms of f(@n,§m); the

parameters im need not remain constant. It would make no difference

if we required the occurrentes of f on the right to be of the form

er

f(in,ﬁm); for in Theorem (10.3}, T Tys Ty, T were defined without al-

lowing replacement of parameters, and by Theorem (8.3), £, may be
defined without using parameters at all. Then by (12.2), the class
ﬁb where n-recursion takes place without replacement of parameters is

identical to the original @a. We could also require that on the right

\

e

-

Rand side of the schema of n-recursion, ﬁhe function letter being
defined should not be nesled within itself below.the second level --
that is, that the defined letter, say f, may appear as part of an
argument of £, but that these inner occurrences of £ should not
themselves contain f. Since in the proof of neither (8.3) nor
(10.3) did we need to violate this condition, oncé.again the classes
ﬂh would not be changed if the condition were imposed. However, we
will show that the situation is different if no nesting whatever is
allowed.

By Theorem (6.2), £, for a > 2 is precisely the cla.ss of
functions computable by a Turing machine_in a number of steps
bounded py ﬁgp) for some p. Consider aﬁy device or formalism what-
ever for computing functions, so long as this device has a notion of
"step" which can bé related to the steps of a Turing machine: in
particular, that there are functions kl(k,s) and kz(x,s) so that
if this device is given input x and halts within s steps, a Turing
machine can produce the same output in ki(x,s) steps; and conversely,
if some function is computed by a Turing machine, and if the function
is computable at all by such a device, then when the Turing machine
takes s. steps for input x,_the function can be computed by our de-
Qice in no more than kz(x,s) steps. |

It should be clear from the foregoing arguments that if qu is

.the class of functions computable by such a device within qu) of its

steps, we will have the theorem qa = Eb for ¢ > Q, so long as kl and

k., are bounded by some multiple recursive function. It seems unlikely

2

v
)

A
e

that any formalism for computation could be put forward seriously
to which these consideratioﬁs woﬁld not apply.

This reasoning above provides some justification for not giv-
ing in full detail the proofs of Theorems (5.2) and (9.1). The
former theorem showed hgw to construct Turing macﬁines to simulate
the Loop programs, and the latter how to make Turing machines carry
out deductions in the Herbrand-Gédel-Klecne formalism; in both cases,
an unproved, though not unsupported, assertion was made that the
similation could be performed within a certain time. The essential
content of each theorem is simply the fact that there is only a
fixed time loss involved in éransferring_from the one fo?malism to
the other, not wha; this loss factor actually is; thus verification
that it is at most expenentiél is merel& an interesting detail.

The original problem which motivated this thesis was that of
relating the complexity of a program to the complexit& of the function

it computes. A final theorem will complete the investigation of the

main question. -

(12.6) Theorem. Say a > 2. Given a program in L , or a
set of recursion equations in %1, it is éffectively
impossible to decide whether there is a B < a so that
- the program (or the equations)could be rewritten so as

to give the same result, and yet be in LB (or Eb).

/\j/l,\

-

\

W W =y

)

- e .

Proof. A ;rivial modification of the constructiogs of §11 or Theorem
(5.1) &ields a function Cw£x,s) which 45 one if éﬁring machine @ with
input x halts in fewer than s steps, and is zero.if it does not.
Consider the derivations (in Ra) of tﬁe functions uyo for each Yg?
where

uyo'(x) = C{¥grx) £y (%)

Let M be a Turing machine such that the sel H = [yo:wahalts with in-
put ﬁo] is non-recursive. If Yo € H, uyo is fl«a almost everywhere;
thus Uyo * RB for P <, If Yo f H, uyo(x) = 0 for all x, so Uy € RD'
Then if we could decide whether the funection qyo was in RO, we could
decide whether ™ halts with input'yo, and so H would be recursive,
contréry to hypothesis. Clearly the samc methods work also for
programs in L.

We have thus established the following statements about Loop
programs .

(1) Loop programs can compute a broad and interesting class
of functions, namely the multiple recursive functions.

(2) Given a program, we can effectively find the least @ for
which the program is in L.

{3) For every program in q&, we can effectively find a p so
that with inputs in’ the program halts in fewer than qu)(max[in])
steps.

(4) There are some programs in I, which actually do run qép)

steps.

“v
ﬁ’l
g

ol e ey b~ S - W

- e

(5) If we know a program requires fewer than ﬁ;p)

steps, we
can effectively rewrite it so it is in Ly-

(6) However, it is in general impossible to determine vhether
(p)
fa

an I, program does in fact require at leasi steps.

Exaetly corresponding statements can be made for functions
defined by multiple recursion equations. Statement (1) means that
we have not proveé impressife-looking theorems aboul an uninterest-
ing class of objects. Statements (2)-(4) establish that the goal of
relating the .complexity of aprogram--as measured by the least @ for
which the program is in I, -- to the time required to execute the
program, is aﬁ aim successfully achieved. Moreover, (5) and (6)
indicate, in an admittedly weak but nevertheless reasonable sense,
that our measure of complexity is the best possible.

Finally, a word about practical applications. The fairest word,
probably, is "none". It is true that if we restrict, say, FORTRAN
by eliminating GO 170 and IF sta£ements the computation time could
be predicted by examining the depth of nesting of DO loops. How-
ever, the prediction is likely to be impossibly pessimistic; for
the raye of growth of even f, is quite large. To be told, say, that .

2

given input x, one's program will halt within

X
2
22

seconds, is not very useful if one wishes to use input 100 or even

2. Of course, by use of ad hoc methods the estimate could be improved,

20
¢

but this is not very satisfying, since the whoie point of the kind
of analysis we have been doine; is to avoid ad hoc methods and use
& general method instead.

There is one further problem. Suppose exarr_dnabion of a program
has revealed that the program with input x will halt within fg(x)
(say) steps or seconds or vwhatever. We are interested in input 17
and therefore insist on inquiring as to the value of fs(l‘i). To
put it in recognizable form, we must compute fs(l’?) but to do this --
in fact even to write down the answer -- requires a time .which is
essentially f5(17) again! We would have been better off running the

program itself; at least it had a chance of halting immedia.teiy.

L

SO U T T T T T e

KT

V. REIATED TOPICS

§13. At the end of the last section several variant possibilities
for a definition of n-recursion were mentioned and it was argued
that all were essentially identical, in the sense that all would
yield the seme classes Rd' This section studies two operalions
hased on n-recursion vwhich are strictly weaker than n-recursion:

unnested n-recursion and limited n-recursion. We will be able to

strengthen results of Peter on the two operations and to answer a

question of Grzegorczyk on the latter one.

(15.1) Definition. The schema of unnested n-recursion is

the same as the schema of n-recursion with the fol-
lowing additional restriction: 1f ﬁhe function f is
being defined, no occurrence of f on the right-hand
side of the defining egquationshas another appearance

of £ in the formulas constituting its arguments.

Péter was able to show L%;, p-74] that the operation of unnested
recursion does not lead out of the primitive recursive functiions;
that is, that the class @ is closed under this operation. Our ana-
lysis will confirm the resul£ by ghowing in what class a function

L
defined by unnested n-recursioéﬂfrom gl,...,gr must lie if

Byreo 18y € f.a.

2

(13.2) Definition. Call a 1-1 function E_:N''" =N

satisfacltory for ¢, ¢ if En is monotone increas-

in?,in each variable, and if for each i, 1 <i <n,

and all in ; ¥ the following inequality holds:

En(xl, . s ’xi—l’xi+l’xi+l’ e ,xn,y)

> En(xl’ seea¥y 0%y L YRR :E:Y)
where b = f(c)(ma.x[;c ¥h.
- o n’

Such an encoding En provides to a certain extent an order-
preserviné map from N? into N for each value of the parameter y.
Of course, En for n > 1 cannot be perfectly qrder-preserving, be-
cause the order type aon for n > 1 is gtrictly greater than the order
type w. A perfectly order-reserving map would have b arbitrarily

large in Definition (13.2).

(13.3) Lemma. For each n,c > 1 and a > 2; there is an

Ent—:f,

n+l 80 En is satisfactory for q,c.

Proof. Induction on n. If n = 1, take El(xl,y) = 2%.3¥, and the
lemms is immediate. When n > 1, let En be satisfactory for ¢, ¢+ 2

and assume En(;cn,y) > max(in,y); this is certainly the case when

#la)

n=1 Since B €& ., B(x,¥) < £ 0,

(max[;cn,y]) for some
number ¢, by Theorem (8.1). Ta.ke”d = q+c +3, write in+x for

Xy +Xpeo X +X, and define

L=

¥ 59

s
- a(x+1)) -
E (X 4x+y+l) f((B (x_+x+y+1))
En-rl(“.l’in’y). = g¥H ¥ gn'n As7Ofn=1 n**n A

>
L 2 (d‘x) (d) 4 = \9‘ 3
> 2X.7Y, 5E“(xn+x+'¥\) . 7fa+n—lfa+n-l(ﬁ'n(xn‘@xwd"]i\))
Now for all En’ X, ¥
= (Q) el]
En(zn+x+y,y) < fa+n__l(max{zn+x+y])
(q+2) -
S Tone rax(x,7,v))
. ¢ -
Therefore, if b= fé_l_l)l_l(max[x,xn,y}), putting b for zl,...,zn, we
have
S (qret2)
o+ -
E-En(b-!-x-l-y, - ,'_13+x+3a) < z'fain-l (max[x,xn,y])
+ e -
5 < féngls)(max{x,xn,y])
using (3.4.ii1). But since by definition g = q+c+3, and ma.x[x,in,y]
: 5
< En(xn +x+y+lA) -
2-En(_§+x+y el ,2+x+55\) < e l(En(xn+x+y+:5\))
S0 .'by the above,
" plax) B
E (x +xty) f (2-E (btxty, ... ,bixty))
E . (x+l,x ,y) > 253750 07N Ja 2 2
l’1+l n- 1]
Eglbix+y,...,bix+y) £ (B, (b+xty,...,brxty))
>2x.3y_.5 3’(3 Ao n‘- -)

Y

= By (b, . b)

vhich is the inequality (%*). fTherefore En 41 satisfies Definition

(13.2) and (13.3) is complete.

-

¥ X

B (% 4xiy) 208 (B (% 4xsy))

E o (x,%,y) oX.z¥.g B0 A Ly atn-1'"n"n TR
n+1' "’ "n’

Clearly En_l_l(x,;cn,y) > max{x,in,y], En+l is monotone increasing,

since f(dx) is obtained from

and En 1 is 1-1; also En A € £a+n S

f

JAl)) -
Ry by iteration. ILet b = fa (me.x{x,xn,y]). For 1 < i <n,

the inequality

* . X ¢ e X « 8.

(%) En+l(x’xi-l’xi+l’xi+l’ ,xn;Y) > En_’_l(x,xi_l,xi,_tl, ,_'t_),y)
holds. For let x be fixed. Then by hypothesis,

En(Xy PR X YL, X, AR 5 X, XY +Y)

> En(ii_l+x+y,xi+x+y,p_*, el ,_‘tl*,y)

where b* = féc+2)(max{in+x+y]) > féc)(max(x,in,y}) +X4y. By de-

finition of b and the monotonicity of En B

R FRRRTE Wy o ;¥)

> En(ii'_l-i-x-l-y s X BV DAY« o x4y,)

En(x 4 1 PR Xy HxAYHL X

Then by the monotone dependence of E ., on E , (*) holds for 1. < i < n.

It remsins to be shown that

(#) E_(x+1,%,¥) > E ., (x,B,...,0,¥)

N .
holds as well. By definition ,‘"’

(13.4) Lemma. 1et E, be the encoding function of Lemmg
(13.3). Then for each i, 1 X1 <n, the function

'"-;l; W'h[!re
n.. .- ¥
ni(hn(xn,y)) = X,

is in .[‘,2.

Proof. Grzegorczyk [g), i P:13] showed that the function (x) is ele-
mentary, vhere (x) is the exponent of the ¥~th prime in the prime-
pover decompos:.tlon of x. The 0-th prime is taken to be 2, 8o, for
example, (2% 3y)0 = x, (2% Sy) = ¥. Then by Theorem (12.4),

(x) € f.z Now 11 (z) (z) since E (x,y) 2%.3¥, If 1r1

are all in .{:2,
) = (2),

for 2 <i<n+a, 7™z o (P l((z))-(z))-(z)
So 1™ 15 aleo in iy

(13.5) Theorem. Say x> 2. If r g defined by unnesteq

n-recursion from functions in I.'.a, then f ¢ £a+n
Proof. fThe function f satisfies the 2" equations

f(En’j';m) = FJ ¢' ’

where for 1 b I 2" s F 3 is a formula. Each occurrence of f in one

of the formulag F 5 18 of the form f(én ,i"m), vhere §n s 'I"m are formilas

K«

not containing f. Thus these formulas represent functions Mn .[‘,a.

Let ¢ be great enough so féc)

in the context f(§n,f'm). Then by Lemma {13.3) choose an

bounds all §n appearing in any for-
mula F
J

encoding En satisfactory for ¢, ¢, and let 1r;1_, .l ,'nnn be the decod-

ing functions for En' Now consider the function T salisfying

e N -
f(O,ym) = o
L n n
(F, if 1r1(x+1) = = 1rl(x+1) =0
& n _.n £ n
F, if ‘rrl(x+1) = = wn_l(x+l)- 0, 'rrn(x+1) >0
ly g :
flxtl,y,) = 4 :
Foar ™x#1)>0,..., ™(x41) >0
2n 13 n
.\
n

5 ﬁ is the formula which results from F

J J

by replacing each occurrence of xi, 1<i<n, by 'Ir:(x +1) = 1, and

Here for each j, 1 < j<2

replacing each occurrence of f(§n,ﬁm) by
£(min(E (8 _, max(y })+1,x),%)

Here, of course, min(a,b) is the smaller of a and b. We assert that

these equations define a unique function 'f‘, end that
- - Ll - - -
£(%,,7,) = H(E (X mex(F,)+D,3,)

The first half of the assertion'é_j_.s immediate by the form of the equa-
tions. For 'f(o,irm) is defined oui-.'right, and F(x+ 1,§m) is defined
in terms of known functions and values of £ of the form £(z ,’I‘m) vhere
z < x+1, since on the right-hand side the first argument of f is

alvays min(E,x) for some formula E, and min(E,x) < x.

<

Eow o

wpel
The other half of the assertion was the fact that En is satis-

factory for ¢, ¢. We have
f(En(O: ves :0:mx[§m]) +1:.‘;m) = Fl

Since ﬁl contains no occurrences of f nor of Xy for any i, ﬁl = Fl
as a funciion of im’ so the assertion is true for (in) = (0,...,0).

-

Say for some & the assertion is true for all (En) < (En) where each

§i is either "xi4-1" or "0". Then

£(8, (8 ,max(y, 1)+ 1,y) = F,
n
where 1 < j< 2.

. on f = 2 = .
Now for all those &, for which Ei . x, +1", ﬂ?(En(En,max{yﬁ}))—l- X3

80 ﬁd is the same formula as FJ’ except that

’f‘(min(En(én,max (v,}) +1,En(En,max (v,) jSm)

is substituted for f(§n,Tm). But since each §,, as a function of in’ &m,
is bounded by q;c), and since by definition of n-recursion §n < En’

and finally since En is satisfactory for «, ¢, we have
E (§max(y)) < E (& ,max(y_})

Thus those instances of T on the right might as well be of the form
th '.
~ - - -
£(E, (S max{y, }} +1,%)
but since (§n) < (En), by the induction hypothesis the occurrences of

? have the same value as

f(sn,'rm)

P = - . - - -
Thus f(En(En,max[ym])-rl,ym) = f(xn,yh) which complete the trans-
finite induction proving our assertion.

The schema of which the definition of f is an example is called

course-of-values recursion with replacement of parameters. In the no-

parameter case course-of-values recursion differs from primitive re-
cursion by defining £(x+ 1) not merely from the immediately preceding
value f{x), but also using several earlier values f(rl(x)),...,f(rk(x))
vhere rl(x),...,rk(x) < x. The term "replacement of parametgrs“ is
used because %(x4-l,yh) is defined using not only ?(ri(x),ﬁm) where
ri(x) < x, but values of the form ?(ri(x), gl(x,im),...,gm(x,ih)), so
the parameters im do not stay fixed.

Péter L%g, §3, §5] shows how such kinds of recursions can be re-
duced to primitive recursion. The essential idea for course-of-values
recursion can be demonstrated by an example. Let py be the y-th prime,

where the O-th prime is 2; as mentioned in the proof of (13.4), (x)y

is the exponent of the y-th prime in fhe prime-power factorization of

x. Say

g(0) = a |
g{x+1) = h(x, g(¥(x)))

: &
where r(x) < x. Define a new function g* as follows:

g*(0) - 2° - 1@:“55/

B, (8%(x)) 5)
g*(x+1) = g¥(x) B, ¥x)

T

22/

Thus g* is defined by primitive recursion. ft should be clear that

g*(x) = pg(O),P%(l) il Pfc(x)
and thus that
g(x) = (gx(x))

Therefore if a > 2, and g is defined by course-of-values recursion
from functions in qd’ g e'%zﬁl'

A similar argument can be applied when replacement of param-
eters takes place. Thus the function T defined above is in Ehwn’
since it is defined by course-of-values recursion with replacement

of parameters from functions in £ This-comp;etes the proof

a+n-1"
of Theorem (13.5). .

(13.6) Definition. If £ is defined by n-recursion from
Byre 0018y, and if in addition there is a function
€41 SO f(xn,ym) < gr+1(xn,ym), then f is said to

be defined by limited n-recursion from SRR

r}

Bryr-

Péter showed that limited n-recursion, like unnested n-recursion,

al 9
does not lead out of the primitive recursive functions [P{, p.113; P4).
&

(13.7) Theorem. Say a > 2. If f is defined by limited

n~recursion from functions in qa, then f € Ebﬁn'

)

R

Proof. In the proof of Theorem (9.1), which showed that each function
f in Rd could be computed by a Turing machine.within time fiﬁ;, ve
arrived al the following intermediate result: if f is defined by n-

recursion from g ,--.;8,, the nuuber of equations {T(in’im) required

to deduce the equation f(VExni, VEymi) = v({x) is given by another n-

recursion as follows

where each 2, is a sum of the form

J

n+m+l + z“'hk(Tl’ o ,Tsk) +1]

and the sum ranges over literal appearances of function letters hk

in F,. WNow all the functions CAERRRET - {S

3 SRREL "N f in each Eﬁ
(c)
are bounded by fl%a for some ¢, so each function hk(Tl""’Tsk) oc-
curring in each EJ may be replaced by qéc)(Tl e s+ Tsk). Here

k
cluded because of the bounding condition. But now observe that the

h, ranges over g,:.-,&.; lgi,...,{gr, f; the function f can be in-

function L;

n-recursion from functions in Ea if ¢ > 2. Then {; is bounded by

which results bounds tf’ and {; is defined by an unnested

fé:ﬂ for some d, by Theorems (13.5) and (8.1); the rest of Theorem
(9.1) goes through unchanged, and if > 1, £ can be computed by a

OO
r some e, so f nd
80 , s0f € Qa+n‘ and Theorem

3 (e)
Turing machine in time QQ+n fo
(13.7) is proved.
Tt might be thought that Theorems (13.5) and (13.7) are pessi-

mistic; although we have shown that if f is defined by limited or

g

unnested n-recursion from functions in .E.a, then f € ;:am » perhaps

in fact we always have f € .ﬁa. This is not the case.

(13.8) Thesrem. Say & > 2. Then for each n > 1 there is

a function T € £ such that T is definsble

on ~ Soan-1
by a single instance of limited, unnested n-recursion

. from .functions in S.',a-

Proof. Recall from Theorem (5.2} that Ml(e,y,z) is the function
computed by the Loop program with Godel number e, when the input is
¥y and the program halts in fewer than z steps. Ml € f’z by Theorem

"(5.2). Now define by unnested n-recursion from sg, M, fa:

T(0,...,0,e,y,2) = SS(M]_(@:Y:Z))

T(!;n_l,xn+ l,e,y,z) = T(En_l,x ,e,y,fa(z))

7(x, +1,0,...,0,e,y,z) = T(x,,2,0,...,0,e,y,1)
1 1

As usual, the equations containing a & are schematic: Er represents

all the r-tuples obtained by letting each £ 4 be either "xi +1" or "O".

Then it is easy to verify that i

. .

. () (x) (x,)
T(xn,e,y,z) = SE(Ml(eJY:fa+n_l fa+n-2 e fa (2)))

We omit the details. Now, recalling that sg(0) = 0, sg{x+ 1) = 1,

we have T(;cn,e,y,z) < 1; so this is an instance of limited n-recursion.

| Al

e

Now let

U(EJY} T(e,O,...,O,e,y,l)

sg(M (e,7,558) L (3))

Then, by the argument of (6.12), U is universal for the characler-

istic functions of £a+n-1; so U gnd hence T cannot be members of

£ But T ¢ 'Ea+n by Theorem (13.5) or by Theorem (.317). This

o4n-1"
completes (13.8).

1
Grzegorczyk [&, p.H1] posed the question: does the operation of

limited 2-recursion legd outside the class e’gﬂ? Since S.'.a = Eg+ 3

Theorem (13.8) answers the question affirmatively.

Theorems (13.5), (13.7) and (13.8) have to be modified slightly
when n-recursion takes place without replacement of parameters, and
gince this restriction is imposed by Péter and probably is implied
by Grzegorczyk, the situation is worth some discussion. However, de-
tailed proof will not be given.

U

In the cese of limited n-recursion, the constrictions may be

modified as follows.

(13.9) Theorem. Say > 2. If f is defined by limited

n-recursion without replacement of parameters from

,‘"_ fe
functions in .Ea, fe S‘,am_ ; and for n > 1, there

is an f so Qefined such that f € Bai-n-l" S.',a+n_2.

Fi

T

s

Proof. The first half follows by observing that the function £ oc-
curring in the proof of Theorem (13.5) is defined, in this case, by
a limited course of values recursion withoul replacement of param-

eters from functions in Ea—t—n-l' This can be converted to a limited

recursion from functions in f’a+n-1 , and we knowv already by Theorem

(6.8) that £a+n- is closed under this operation. It follows that

1

1€ £a+n-l'

On the other hand, in the proof of Theorem (13.8) only the

parameter z (the last argument of T) is subject to replacement.

. Thus the definition of T can be regarded as an {n+ 1)-recursion

without replacement of parameters, simply by .congidering z a re-
cursion variable rather than a parameter. Thus for n > 1 the function
T can be defined by limited n-recursion, and T € £a+n-1- £a+n-2' This
completes (13.9).

The same method can be adapted to show

(13.10) Theorem. If for @ > 2 and n > 1 f is defined from
functions g oeoe »8,. € .E,a by unnested n-recursion
without replacement of parameters, then f € f’a+n~l b

and there is an f so defined such that f€£a+n-l-£a+n-2'

The proof is omitted. The reqdirément n > 1 must be included since
unnested l-recursion without replacement of parameters is essentially

primitive recursion, which is known to be capable of defining functions

in f'a+l- f’a from functions in f’a'

7

§14. The study of the several hierarchies carried out in Chapters
II-IV depended heavily on the properties of cémputation-time closure,
closure under substitution, and in some cases closure under limited
recursion. Since the same classes arose ggain and again in spite of
the various ways in which the hierarchies were defined, it is natural
to wonder to whal extent the closure properties alone characterize a
gset of functions. Might it be, for example, that every class of
multiple recursive functions with the above closure properties and
containing (say) £, must be either one of the Eu or the vwhole class
of multiple recursive functions? This possibility seems, if anything,
. enhanced ﬁy the existence of two ways of refining the Eu hierarchy
studied by R. W. Ritchie and by Cleave.

~ Ritchie [Sﬁgii defines a hierarchy [Fi:i € N} whose union he calls

the predictably computable functions, and which turns out to be pre-

cigely the set of elementary functions; that is 52. Fo may be taken
toﬂﬁe the linear functions; then Fi+1 is defined as the smallest
elass of functieons computable on a Turing machine whose gg;umption
of tape is bounded by a function in Fi' The input and outpul of the

Turing machine are by Ritchie's convention in a binary encoding; it

X
can be shown that 2* ¢ F. -F 22 € F

1 o’ 2
bly computable" arises from the fact that if a function is in Fi’ it

- F,, ete. The term "predicta-

can be computed using an amoun{ of tape bounded -- that is, predictable ~-
by a function in Fi-l’ which in twrn is predictable by a function in

Fi-2’ and so forth.

indicates, F

In characterizing h%§ classes Fi’ Ritchie showed fhat each
class had the propefty of computation-time closure. Each class Fi
is closed also under "explicit transformations" -- equivalent to
Definition (4.8), parts (i) and (ii) -- but, as the example above
i fails to be closed uﬂder composition. However, Fi
is closed under a certain limited form of composition which is suf-
ficlent to prove the desired results. The Fi individually fail also

to be closed under limited recursion, although of course their union

is closed. _
o &
An analogous hierarchy {Ea:a < @'} was considered by Cleave [0T].
He considerés a kind of simple computer, the "unlimited register ma-
chine" of Shepherdson and Sturgis [gé]. The classes ﬂa arise by re-
stricting the number of "transfer" or "jump" instructions carried out
in a given computation. Thus EO is the class of functions computable
in such a way that the number of transfer instructions executed is
bounded by & constant; given Ea’ Ea+l is the class of functions com-
putable in such a way tﬁat the number of transfers is bounded by a
function in Ea' The analogy here with the predictably computable
functions is evident. At limit ordinals, the functions obteined so
far are collected:
Ew-z{zs_

E .
ar (r+l) seN

Thus at limit ordinals, the effect is that of defining a new machine
whose elementary opefﬁtions congist of those functions definable in

a class with a smaller ordinal.

LS

T

b=)

oy

R T

ESi/

Cleave is able lo show that if the basic arithmetic operations
of his machine allow addition, multiplication, and testing for zero,
then Ew-s = Eg_l_z for each 5 € N, s > 1; that is, Ew's = £s+1' Thus,
part of the .ﬁa hierarchy appears again; but once more the classes Ea
fail in general to be closed under limited recursion and substitution.
for a fixed s, the classes Ea)-s 4p BT snalogous in several ways to
t.he Ritchie classes Fr , but apparently it is not true that Rr = Er'

The work of Ritchie and of Cleave tends to reinforce the natural-
ness of the .L'.a in two ways. First, certain of the .Ca classes reappear
in each of these contexts; and second, both methods of refining the
hierarchy result in classes which fail to have the attractive closure
properties of the £a.

Nevertheless, the hierarchy Iﬂa can be refined in such a way that
the closure properties of ‘Ecx are retained. In fact, we will demonstrate
the existence of an almost embarrassing richness of classes which are
closed under limited recursion, substitution, and have the property of
computation-time closure. There are several preliminary definitions

and theorems.

We recall some useful notation common in the literature.

(14.1) Definition. If m is a Turing machine, let e be the
Gddel number of <. Then,f,:_cpé:Nn -+ N is the (partial)
function computed by W with input X , and o N N
is the (partial) function giving the exact number of

steps required for m to halt with input }'En. Also,

say that e is the index of f when f is the function

Qe

This definition assumes an arithmetization of Turing machines
which has not been carried sut. However, the task has of'ten been

performed in the literature; see the remarks following Theorem (14.3).

{(14.2) Definition. If P is a predicate, we will say that P is
a member of a class of functions if a representing
function for P is in the class; that is, a funclion f
80 f(xn) = 1 if P(xn) is true, f(xn) = 0 if P(xn) is
felse. If P is a predicate [P(in)] will denote the

representing function of P.

Then, for exsmple, x = y is a predicate in 52, because

[x = y]=sg|x-y| =12 |x-¥]-

(14.3) Theorem. The predicate given by [¢e(in) = y]
is in 52 as a function of e, in' and y; there is
an 52 function U so if z > ¢e(xn), Un(e,xn,z) =

e (x,).

.Proof. As we have mentioned, to consider statements of this type

requiresd an arithmetization of Euring'machines. It is well knowm,
e
however, that there exists a G&del numbering of Turing machines such
that for each n, T € £,, where Tn(e,in,y) = 1 if the Turing machine

with GSdel number e, given input in’ halts in precisely y steps, and

ﬂl?

Th(e,in,y) = 0 otherwise. Then, of coﬁrse, [¢e(§n)_= ¥l= Tn(e,in,y).
Likewise Un € £2; hére Un is precisely analogous to the function LPh
of Theorem (5.2). See, for example, Davis [D, pp.56-62)]. Davis
notes only that his construction yields primitive recursive functions,
but since it is readily shown that all the recursions are bounded by
fép) for some p, it is immediate that T and U are in £,. Kleene
L;i §§56-57] carries out a similar arithmetization for recursion
equa%ions.

T—

A property of certain functions which is very important in the

seguel. is

(14.4) pefinition. A recursive function f is honest
vhenever the number of steps required to compute
f is bounded by an £2 function composed with £
that is, if f(in) = Un(e,in,r(in,f(in))) for some

number e and some r € 52.

fhe term "honest" is used because if f is honest, the value of
f(in) accuralely reflects the difficulty of computing f(ﬁn)- No dis-
approval of functions which are not honest is implied. In fact highly
dishonest functions, for example complicated characteristic functions,
are rather more interesting £han honest functions; much of the time
required to compute an honest gthétion is spent merely in writing
down the result.

We note that a somevhat broader definition of honest was used

25
by Robbin [JR].

T8

A useful alternate characterization of honesty is the following.

(14.5) Theorem. A recursive function f is honest if

and only if [f(in) = y] is in 1:2.

Proof. First aséume [f(in) = y] is in £5+ Hence we have a Turing
machine which computes [f(in) = y] within féc)(maf{in,y}) steps for
some constant c. Consider the following proceduré to compute f:
given input in’ write in,o on the tape and use the given machine

to compute [f(x) = 0]; if this is 0, add 1 to the O at the end of
the in and compute [f(in) = 1]; if this too is zero, continue test-
ing [f(in) = 2], etc. until a true predicate is found. This requires

on the order of

£{x)
21=0f2(-'c)

< (14 2(0) 20 maxli, £(%)))

(max{in,i})

steps. But the latter function is in £2 as g function of in and
f(in), so f is honest.

Conversely, if f is honest, there exist e e N and r ¢ £2 50

that

r(in:Y)

[f(;fn) =yl =[Un(e;in:r(in:y')) =y]: zi=0[¢e(in) = 1]

* !,r‘ +
where the right-hand side is inf'l:2 because € = EE (€ is the class

of elementary functions) and by definition, & is closed under limited

sum.

&)

-

T

Although we have -called computation-time closure a closure
property, it differs from other such properties, for example,
¢losure under limited recursion, in an important sense. Vhen we
speak of the least class of funciions containing given functions
and closed under limited recursion,.we refer to a well defined
entity, namely the intersection of all classes of_functions vhich
contain the given functions and which are closed under limited re-
cursion. That this intersection is indeed closed under limited
recursion follows from the fact that given three function31%§£2 is
at most one function defined from them by limited recursion.

On the other hand, it is not clear that there must be any
smallest class contaiﬁing given functions and having the property
of computation-time closure. For if a functioﬂ is in such a class,
the class is required to contain also some bound on the computation
time of the function. But there are many such bounds, corresponding
to many ways to compute the function, and there is no guide to se-
lecting which bound should be included in the class The problem
is quite real; indeed, one of the resulis in the sequel implies
that there are sets of functions such that there is no smallest
computation-time closed set containing the given set.

The next theorem relates the notions of computation-time
closure and closure under limiéia recursion; thus it allows us to
generate computation-time closed classes having desired properfies

without encountering the problem just discussed. The theorem also

g

N

provides an alternative proof of the closure of the classes £a under

limited recursion.

(14.6) Definition. If a class of functions is such that

(14.7)

Proof'.

where

every member of the class is bounded by an increas-.
ing function in the class, the class is called
monotone. Also, for brevity, a class which is
closed under substitution and is computation-time

closed is called fully closed.

Theorem. Let © be a class of functions containing
22. Then ¢ is monotone and fully closed if and only
if C is the closure under limited recursion.and sub-

stitution of a set of honest functions.

First assume * is monotone and fully closed, and say

f(in,O) L E(in)
f(in:y +1) = h(in:r;f(in:y))

£(x ,y) < (X ,¥)
g,h,b € C. Define

f*(&,in,o) = min(L,Qﬁgqg,in,L))

f*(‘l':;in:y +1) = min(L:Un+2(eh:in:yaf*(‘b:;cn:y') L))

(L% ,¥) < 4 2

gl

=

-

&

where eg and eh_are indices for g and h, and ¢eg and ¢eh are bounded
by functions in C. Notice that I* e 52. Now by the hypotheses on C,
let b‘(in,y) > b(in,y), and say ' is in C and increasing. Likewise,
let £ € C be an increasing function with L(;(n,y) > ¢eg(§n),
Ux »y) > %h(in,y,b'(in,y)), and X ,y) > b(Xk ,y). Then it is easy
to show that f(in,y) = f*(&(in,y),in,y), so £ € C. That is, € is
closed under limited recursion; in fact, C is the closure under sub-
stitution and limited recursion of its honest functions.

Conversely, let C be the closure under limited recursion and

substitution of any set of honest functions. If f ¢ C, ™e € C where

"“‘f(xn!o) =0 :
y+l if £k w(x,y)) < £(x ¥ +1)

< + =
w\f(xn:y l) i
*%(xn,y) otherwise

malx ,¥) £y

This function has the property that f(ﬁn,vnf(in,y)) is not less than
any of f(in,o),...,f(in,y); 80 f(xn, f(in,y))4~y is in C, is strictly
increasing in y, and bounds f. By applying of the same technique to
the other variables of f, one finds a function in C which bounds f
and is strictly increasing in each varisble; thus C is monotone.

Now since C contains £,, all the honest functions of C have
computation times bounded by functions in C. It is éasy to show
that if f is defined by substitution from functions whose computation

times are bounded in C then the computation time of f is likewise

g

bounded in C. There remains the case in which f is defined by
limited recursion f:oﬁ g, h, b as sbove.

Given in’ ¥, there is an obviocus method for using a Turing
machine to compute f: first compute g(in) = f(ﬁn,o); use this re-
sult to compute h(a"cn, 0, f(in,o)) = f(in,l); continue until f(:'cn,y)
has been computed. If eg and e, are indices for g and h, the num-

ber of steps is bounded by
- 1 plE 4 -1)) & 28 (e (i
@eg(xn)+zzzl ¢eh(xn,1 1,f(xn,i 1))+f2 (max{xn,y})

where the_last term is added to cover the cost of bookkeeping.

Since C contains £2’ and @eg, 0eh, and f are bounded by monotone

functions in €, this number of steps is less than some function of C.

By the containment of 52 in ¢, C has the function TMm for each MW
thus C is computation-time closed. (A more detailed discussion of
the use of Turing machines to compute functions defined by limited

a4
recursion is presented by Ritchie [RWRY].)

(14.8) Theorem. If f is honest and increasing, the

iterate f(y)(x) is also honest.

Proof. Define

That is,

2
K(y,2) = pyPy- -+ D

Then let
ey = K ey) = (0,

Then

(£ x) = 2 - sgkiégZ){[(W)o = x)-[(w), = 2]+ Tt(y,u))

which shows [f(y)(x) = z] is in .{',&and f(y)(x) is thus honest.

(14.9) Theorem. ILet f be a recursive function. Then
there is an honest increasing function h so
h(x) > £(x); and if ®>2and f €%y, hcan be

chosen so h € .Ea

Proof. With our conventions for input and output, if cpe is any re-

cursive function,
qJe(x) < ¢e(x) +x+1

Let e be an index of f; then use the construction of Theorem (14.7)
to find an £, function m so @e(m(x)) is not les§ than any of
@e(o), ¢e(l),...,¢e(x). Take h{x) = ¢e(m(x)) +x+1; h is increasing,

-and
hix) =yl =[y>x}: 2 ([z= n(x}]-[o (z) = (y2x):1]}
zZ <X

so h is honest. Moreover, if f ¢ .Ea, e can be chosen so °e € .[',a

(14.10) Definition. If f is any strictly increasing
function, f:N ~ N, then the inverse of f,
written f'l, is the funclion defined by: f-l(x)
is the largest y such that f(y) < x if such a

y exists; f‘l(x) is 0 if y does not exist.

(34.11) Theorem. If f£:N - N is & strictly increasing

function, £°L has the following properties:

(1) £ is nondecreasing, fulf(x) = x, and if
x > £(0), ££7Hx) < x;
(i) If f is recursive, £L s recursive;

(iii) If £ is honest, £ e .E.z.

Proof. If x > £(0), there exists a y so f(y) < x, by .taking y = O.

Since f is increasing, there are at most finitely many y so £(y) < x,

so £ is well-defined. Now f-lf(x) = X, since f-lf(x) is the largest

y so £(y) < £(x); by the increasing property of £, x = y. Also

ff'l(x) < x if ¥ > £(0). For in this case there is & y so £{y) < x;

ff-l(x) < x is immediate by definition. Also, £ is nondecreasing;

for by definition, £{f X(x +1)+1) > x+1. But if Y xr1) 41 < £ (x),
¢

since f'l(x) < x we have a contradifion. This completes (14.112.4).

If f is honest, [f(y) = x]gis in &,. Say

£10) = 0
" £ Hx) +1 if [E(£7H(x) +1) = x+1]
f (X+l) = -1
£(x) otherwise
f'ltx) < x

Since f_l is defined by limited recursi;:m from functions in Sﬂz ’

L e £, We cmit,the proof that £71 5o defined in'the inverse of
f. Even if f is only recursive, [f(y) = x] is recursive and the
above limited recursion defines f°1 effecti vely, so £71 18 recursive.

This completes (1%4.11.11i) and (14.11.1ii).

(14.12) Definition. Let r be an increasing, recursive
function, and let £, g be functions. If for all
¥y and x, x > r(y) implies f(y)(x) < g(x), write
f<.g. If there exists an r so f <, g, we will

also say ©< g.

It should be obvious that < is a partial ordering on functions.
It is easily shown that fa<r fa+1 vhere r(y) = 2.y+ 1. If f and g
are recursive, it is an interesting question whether the propositicn,

()

"for all y, g majorizes f , implies the existence of a recursive

rso f<, g
The next lemma shows < provides a dense ordering on the multiple
recursive functions; it is basic for the major results of both this

section and §1S.

(14.13) Lemma. Suppose T and h are increasing, honest
functions and f < h. Then there exists an in-

creasing, honest g so £ < g< h.

Proof. Say f <, h. By Theorem (14.9), take s honest, increasing,

and such that s(x) > hr(xg). Tet t = g1

' (r"lh"l(x)). Now define g:

and observe that t(x) <

Yotk

alx) = £(EM) (y

8ince t is nondecreasing and f is increasing, g is increasing; g is
honest since t € £, by Theorem (14.11.4i1) and [f(Y)(x) =z] ¢ £,
by (14.8).
Next, f <, g viar) =s. For if x> 8(y), t(x)+1 >y so
f(y)(x) < g(x).1
; For typographical convenience, write F(y,x) for f(y)(x). We

assert that
g7 () < B((y +1) - (4Y) (x) +1) %)

If y = 0, the assertion is immediate by definition of g. Ify>o0,

assume the assertion for y; then

e¥*2) = gV (x)
= Flta) (x) + 1,6V (x))
< Fleg) () + 1,1+ 1)+ (861 () + 1) %))
< Pt 0+ 1,8 () (864 () + 1) %))
= P x) 41+ (r+2)- (66 ()4 1))

F((y+2) - (6 (x) + 1))

and the assertion is proved. Take rz(y) = r((y+l)2); now f(o)(x) =

e 3(0)_(,{) < h(x) if x > r(0). . Since r,(0) > r(0), s(o)(x) < h(x)
o=

fan

if x > r,(0).
If g(y)(x) < h(x) vhenever y > ry(y), by substitution in the

inequality asserted above

eV x) < F((y+ 1) (th(x) +1), 1) for x> r(y)

< F((y+ 1) ((r™X(x)) + 1) ,x)

< F(r"H(x)) for r > ry(y+1)
#{rHx)) (x)

The third line follows since it is easily shown that (y+ lj-(\r(f'l(x))+l)
< r"l(x) when x > (¥ +2)2; but since r is increasing, r2(y+ 1} =
r((y+2)2) > (y+ 2)2. Then since rr_l(x) < x if x > r(0), and since

for all ¥ rz(y) > r(0), f(r-l(x))(x) < h{x) by the assumption on r.
Therefore g(y)(x) < h{x) for x > ra(y); that is, g <r, h. ILemma

(14.13) is proved.

(14.14) Theorem. Say 2<B <A< of®. Then there is a

family D of classes of functions such that

(i) If DeD, fﬁch.ﬁa;

(11) D has a dense, linear ordering under set
inclusion;

(iii) If D € D, D is fully closed and closed
under limited recursion;

(iv) If D, D, € D and D, < ,, O, contains a.

2 1 27 "2

universal function for Dl.

Proof. By Theorem (14.9), chooz-';_e an honest, increasing function
:‘-
Al (x)y, :
tg € &g 50 ta(x) > fa(x). Let to(x) = tg7"(x); then t, is increas-
ing, ty € £, and, by Theorem (14.8), t, is honest. Finally,

tg <y ty vie r(y) = y+1.

Then by Lemma (14.13), there is & set T of honest, increasing
functions, all of which bound té , all of which are in f.a, and which
has a dense, linear ozicring under < . For each function t ¢ T with
t f ty and ¢ # tg, put D, in D, where D is the closure under sub-
stitution and limited recursion of {%, s, max); here s is the suc-
cessor function, s(x) = x+1. Each §_e€ D is fully closed by Theorem

t
(34.7). Clearly every function in D, is bounded by t(c) for some

t
fixed c, so by definition of «, if tl < tz then ﬂtl c th; thus D is
densely ordered. Finally, if D e D, .Eﬁ c D c f, and for each t € T,
tB < t.
Finally, if D"-"l’ nta ¢ D and Dtl c th, tl < tz; thus
Ul(e,x,tz(x)+ e) is universal for the one-place functions of D, » by

exactly the same arguments as Theorem (6.12). This proves (14.14.iv).

(14.15) Theorem. Say 2 <P < & < &f*. Then there is an
infinite family I of classes of functions such
that

(1) If eI, fgcicly

(ii) The members of I are pairwise incomparable
under set inclusion;

(iii) If 7 ¢ I, 7 is fully closed and closed under

limited recursionf

(iv) 1If 9y e Iand & £ J,, there is a charac-
_teristic function in Jl- ‘72'

g

A

o

such that f(x) > f

Proof. The construction of Theorem (14.14) yields an infinite set

T of functions all of which are honest and increasing, and such

T increases faster than any member of Eﬁ'

For each t € T, let dt be the function

t(x) if x € range t
d (x) =
0 othervise

Each dt is honest, for

[6() =y] if 5 [6(1) = x] # 0

[d‘t(x) = Y3 =
[y = 0] otherwise

Then for each t ¢ T, let the set a£ be in I, vhere J% is the closure

under limited recursion and substitution of {dt’ fg, max, s). As

before, s is the successor function. (14.15.i) and (14.15.iii) are

immediate.

Now consider a set Jf € I. We assert that each function f € Ji
hes constants a. and b, so that nf(y) < fébf)t-l(y), where nf(y) is
the function giving the number of n-tuples (in) with max(in} <y and

(ar)

(y). That is, n.(y) is the cardinality of the
B f

set
= (ap)
(s max(%) <y & H7) > £, F ()

Such constants certainly exist for fb, max, and s; and the cardinality

of

gy

‘that T is linearly ordered by <; also, T c £, and each member of A

Ry

x: x<y& dt(x) > fﬁ(Y)]

is no more than t“l(y)+ 1< fﬂt“l(y). If £ is defined by limited
recursion from functions for which the assertion above holds, lhe
assertion holds for f immediately by the bounding condition. If

f ig defined by substitution, f may be written

f(in) &y h(gl(in)""’gm(in))

and where we may assume there are suiteble constants ah’bh’al’bl""’%m’

bm so that the agsertion holds for h, Bysve 2By By taking some of

gl,...,gﬁ to be constant or identity functions, any instance of sub-

stitution may be written in this form.

I.let a.g = max[al,---,am), bg

= max(bl,...,bm), and say & = By "8y

1t max(%) <y, £(x) > féa)(y) only if all of g (X),-..,g,(%,) sre

bounded by fﬁag)(y) but h(gl(in)""’gh(ih)) > féa)(y), or one or

1 - a '
more of gl(xn),...,gm(xn) exceeds fb €' (y). In other words, the

nunber of n-tuples (x) with max{x) <y and such that £(x,) > féa)(y)

is no more than nf(y), where
(b) (a) {v,)
I h’, -1 g n i4, -1
n(y) = £ "t £ () + 2 £ 7 tg(y)
Now by examination of the construction of the function t ¢ T in
Lemma (14.13), for each such t sthere is a non-decreaéing function

r so t(x) = fér(x))(x). Then for any ¢,
£{e(x) = £)
3 f(c+rféc)(x))

(x)

tféc)(x)

7 3\

iz

By applying £ to both sides of this inequality,
£7L féc)t(x) < fff)(x)

Putting t 1(¥) for x,
[9)

v <oty for vy 2 40
By choosing b sufficiently large, then

(a)
vhe, ©(y) < féb)t'l(y)

But then

ng(y) < f;bh+b)t'l(y)+m-fébg)t*l(.v) < f;bf)t'l(y)
for suitable 'bf; this concludes the proof of our assertion.' The
next step in (14.15) is to show that if t, u e T and t < u, there
are no numbers a, d so ndt is bounded by féb)u-l; we conclude that
dt ? Ju- Because f, < %, for each number a there is a constant c

p
so the cardinality of

{x: x<y& dt(x) > féa’)(y)]

is greater than t-l(y) * c. Given any b, choose y_ so u(yo) > t(a)(yo)

+ ¢ and t(yo) > féb)(yo); this is possible because fB <t < u. Then

g, (u(y,)) 2 ¢ () ¢ ¢
> t(yo) +cce
> £)(y,)

£ u(y,)

1

43

Therefore, for.no a, b is ndt bounded by f(b)u"l; hence dt ? ah.
On the other hand, every function in J% is bounded by t(c) for
some ¢; but if t 4 u, du is not bounded by t(c) for any c¢. Thus

t
(14.15.iv) will follow immediately from the next theorem, which is

%u $ J%; and so Jh and 7, are setwise incomparsble, proving (1%.15.ii1).

interesting in its own right.

(14.16) Theorem. Let C and D be fully closed classes
containing £, with C - p £ §. Then there is

8 characteristie funetion in C - D.

Proof. Pick an arbitrary constant a and let £*¥(x,b) be the smallest
number k so kK is unequal to all of Ul(O,x,féa)(ma¥{x,b})): '
Ul(l,x,féa)(max[x,b])),-..,Ul(x,ﬁ,féa)(max[x,b])). It should be clear
that £* € £, and £*(x,b) < x+2. '

Now take any function g ¢ C -0, and let h € C be a bound on
the computation time of g. Then put f(x) = £*(x,h(x)); £ € C vy
closure under substitution. We asserl that if ey is any index for
3 ¢e1(x) > féa)(max{x,h(x)]) for almost 8ll x. For if this is
false, there is an x > e, 50 @e‘(x) < fga)(max(x,h(x)}); then
‘£(x) # Ul(erx,féa)(max[x,h(x)})) by definition of £, but £f(x) =
Ul(e,x,fga)(max{x,h(x)})) by the properties of Uy. This is a contra-
diction. Bl
Now let c(x,y) = [f(x) = y]; ¢ € C is immediate. Consider the

following procedure for computing f, given c: successively compute

¢

[£(x) = 0], [£(x)} = 1],...,[f(x) = x+2]; one of these must yield
1 as a result. ILet f(x) be the y for which [£(x) = y] = 1. If e,
is an index for ¢, the number of steps required is bounded by
o féd)(max[x, = o (x,1)))

y<x 2
for some fixed d. Then if ¢e2(x,y) < h(x) for infinitely many x,
the number of steps required to compute f is less than
féd)(max{x,(x+3)-h(x)}) for infinitely many x. But we showed above
that any machine for f must require at least fga)(max{x,h(x)]) steps
for almost all x, where 8 was arbitrary; we conclude by this reductio
that every index e, for ¢ has ¢e2(x:¥) >.é(x) for almost all x. Then
if ¢ € D, a function bounding h would also be in D by the full closure
property of D, and hence g would be in D; but g e C- D, so ¢ * D.
Then also c* e C- D where c*{x) = c(vl(x),vz(x)), for c(x,y) = e*(t{x,¥)),
which proves (14-16).

Theorems (14.14) and (14.15) may reasonably be interpreted as
casting doubt on the naturalness of the classes Ea. For if, as im-
plied by Theorem (14.14), there is a dense, linearly ordered hierarchy
of classes of functions whose union is the multiple recursive functions
such that all the classes have the same strong closure properties as
the Sa, the Ed themselves no longer seem so significant. For example,
given the dense hierarchy, we égh-find a subordering of any denumera-
ble order type we please. Theorem (1U4.14) even implies the existence
of uncountably many fully closed classes of multiple recursive functions

with a linear set theoretic ordering. Likewise, Theorem (14.15) can

gﬂ_

be extended to yield uncountably many incomparable classes which
are fully closed.

One development is possible which would restore the importance
of the classes .Ea. Suppose C is any fully closed class of multiple
recursive functions. Say C[0] =C; . giveﬁ Clal for ¢ < ww, let
Clo+ '] for n > 0 be the closure under substitution of Clo] and
all functions obtainable by (n+ 1)-recursion from functions in C[o].
Then it seems possible that for any such C, there are o, 8 < a® such
that Cla] = Eﬁ; that is, by applying multiple recursion several times
to any "in-between" class C, eventually one of the £ classes is
reached. This possibility has not been seriously investigated except

by trying the few exaxfxples which suggested 1it.

7/

§15. Blum has recenily published some remarkable resulis on the
? ¢
complexity of recursive functions [B]. One of his theorems is the

following.

(15.1) Speed-up Theorem (Blum). Iet r?be a total recursive
function, J‘;:N2 - N. Then there is a total recursive
cheracteristic function f with the property that to
every index i for f there corresponds another index

§ for £ such that for almosi all x, Qi(x) > r{x, ¢j(x)).

Blum's theory is machine independent. For example, he does not
demand of the step-counting funciion QJ(x) that it actually give the
steps used by the j-tﬁ machine with input x, but merely that for each
j and x that @d(x) converge if and only if ¢j(x) converges, and that
the predicate [¢J(x) = z] be recursive. As we have seen, if ¢j
measures thé actual number of steps taken by a Turing machine,

[¢j(x) = z] is in £,, that is, an elementary predicate.

The Speed-up Theorem implies, for example, that there is a re-
cursive function f so if mi computes f, there is another index j for
£ so that ¢J(x) < 2¢i(x) for almost all x; that is, given any machine
for f there -is another machine which computes f and halts in only

about the logarithm of the number of steps reguired by the first ma-
L

L

chine. Moreover, as Blum shows, the faster machines cannot in general
be discovered effectively.
Blum also proved a more powerful version of the Speed-up Theorem

which shows that the r of Theorem (15.1) can be as large as ¢, itself.

,j 3t

(15.2) Super Speed-up Theorem (Blum). Let g be a total
recursivé function. Then there exists a recursive
characteristic function f such that
(1) If i is an index for f, Qi(x) > g(x) for

almost all x;
(i1} To any index i for f, there corresponds an

index j for f such that ¢1(x) > ¢J¢j(x)jgdlww¢r all #

This theorem has the Speed-up Theorem as an immediate conse-
quence.

It might be thought that the function f whose computation can
be sped up must be enormously more ;omplex than the r of Theorem
(15.1) or the g of Theorem (15.2). By agreeing that oj(x) has its
natural interpretation, the methods of Lemma (14.13) may be aq;pted
to prove a stronger version of the Super Speed-up Theorem in which
£ is, in a reasonable way, only slightly more complex than g, and
that there are functions lying very low in the.qx hierarchy whose

computation can be sped up quite considerably.

(15.3) Theorem. lLet g be an honest, increasing function

with g(x) > 2%, and r be an unbounded, nondecreas-

ing recursive funection. EThen there is a recursive

characteristic function f such that:
(1) If i is any index for f, Qi(x) > g{x) for

almost all Xx;

g 57

N

(ii) There is an index j for f such that ;
tbj(x) < g(r(x))(x) for almost all x;

(iii) For each index i for f, there is another
index j for f such that for all c,

¢i(x) > ¢§°)(x) for almost all x.

Proof. The proof consists of a main Lemma (15.4), which is a sirength-
ening of Blum's lemma for the Super Speed-up Theorem [%, p.330], then

the construction of f, and finally several lemmas on the properties of
f£. Two of these latter are slightly modified versions 51‘ Lemmas 1 and

2 used by Blum [g, p.327].

(15.4) Lemma. Let g and r satisfy the hypotheses of Theorem
(15.3). Then there is a function qs(x) such that
(1) For each s and all X, qs(x+l) > qs(x);
(ii) PFor each s and all X, qs+l(x) < qs(x);
(iit) For all s and ¢ and almost all x,
{c) . '

al)x) < g (23
(iv) For all s and almost all x, g(r(x))(x)

> q(x) > &lx);

(v) As a function of s and x, qs(x) is honest.

Proof of lemma. By (14.9), chdbse an honest increasing function b
go for all x b(x) > xz, b(x) > g(x)(x), b(x) > g(r(x)+l)(x), and
such that b-l(x) < r(x) for almost all x. Then let ts(x) = b(28+2)(x).

As a function of s and x, ts(x) is honest by Theorem (14.11). Then

'¢51>_

7

t;l(x) is in £,, where by t;l(x) we mean the grealest y so ts(y) <x
if y exists; t;l(x) = 0 if it does not. Then say
4
(tg (x)+1)
=g ° (x)

Parts (i), (ii), (iv), and (v} of the Lemma are.{inunediate. Now if
g1, Bo
+1. 2
x> ts(y), g(y)(x) < g(y)(x) < qs(x); thus -g-<t_g.. Since
2
ts+l(x) = bbts(x) = btsb(x) > qsts(x), by the argument of Lemma

(14.13),

qs+l < A CL e

where rs(y) = ts((y-i- 1)2). This proves part (iii) and thus Lemme
(15.4). ' '

The proof of (15.3) now continues with the construction of f.
First we define a function f‘mr and an associated set Kuv each of
which depend on the input x. Given x, compute fuv(x) and Kuv(x)

as follows.

set K (-1) = g

If x > 0, find the smallest k, k<x,

so that all of the following are true:

(a) x<v,orgx>vandk<u;

(b) o (x) < qfx); ¢

() k¢ Kuv(x-l).

If such & k exists, set Kuv(x) = Kuv(x'l) U k],
and put fuv(x) =1 J(pk(x); if no such k exists,

put Kuv(x) = Kuv(x_" jH fuv(x) = 0.

< 21

Then the function f of Theorem (15.3) is foo. We can also construct
fuv more formally, so that it is clearer that it has the properties
vwe ascribe to it. To simplify the presentation, we will use certain
notations not yet{ introduced. If P(S'cn ,¥) is a predicate, the pre-
dicates (3 y)< xP(Jncn,y) and (Vy)< * P(xn,y) are obtained from P

by limited quantification; the meaning of the former, for example,

is @y (y<x& P(in,y)). The predicates of £, are closed under
limited quantification; this follows immediate from the closure of
.(52 under limited sum and limited product. The predicates of 112 are

also closed under. the Boo'Q,uw\ operations &, Vand ~. Finally, f’z

is closed under limited minimization: obtaining pk, x P(S'cn sk) from a
predicate P, where the notation means the least k such that k < x and
P(in,k) is true; or zero if there is no such k. The closure of 552
under. this operation follows directly from the closure of 552 under
limited recursion. Grzegorczyk discusses all these operations more
fully [G].

Construct functions ¢, K¥, f* as follows.

c(u,v,b,K,x) = bk x+l[((x <v) v(x>ve&k>u))
& (By)fla(x) =yl & (v, [0 (x)=w])
& (Vi) [(K); # k+1]

L.V [k = x+1]})

o

l if C(u,v,b,l,o) = 1
K*(u,v,b,0) =
2 otherwise

%(u,v,b,x) 1if c(u,v,b,K*(u,v,b,x),x+l) = x+ 2

K*{(u,v,b,x+1)=

* 3
K*(u;VJb:x)'ﬁ{ﬁ(u,v,b’K (U,V,b,?(},x+1) otherwise

K”(v,b) < ” 'f N
LT —_ “

=1

0 if (K*(u,v,b,x))x= 0
f*(“:vxb:x) =

1+ U ((K*(u,v,b,x)), = 1,%,D) FO S

£ (x) = £(u,v,q,(v) + g, (x),x)

If, in the informal algorithm, Kw(x) - K (%~ 1) = {x}, we will say @
is spoiled for x in Kuv' Notice that if cpk is spoiled for x in Kuv’
then fuv(x) = 1< :pk(x) # cpk(x). (Blum uses the term "cancelled".)

It is clear that f* defined above is elementary. It is not so
clear that fuv(x):.‘f*(u,v,qo(v) +qu(x),x); nevertheless, we will omit
the detailed proof. The representation of Kuv used by K* is as fol-
lows: if q>k has been spoiled for some y < x in Kuv’ then the prime-
pover decomposition of K*(u,v_,qo(v) +qu(x) ,X) contains a factor pl;ﬂ
and no other prime in the factorization has an exponent k+1. If P
has not been spoiled for any y _‘éx in Kuv’ the prime-powver factoriz-
ation of K*(u,v,qo(v) +q_u(x),x) contains no prime with an exponent of

k+ 1. The crucial fact which assu\n(res that £* has the correct proper-

ties is that in the caleculation of f for u < v, wé are called upon

Al

S ;'
P

to know the values of-qu(x), qu+l(x),...,qx(x) if x > v, and

qo(x), ql(x),...,qx(x) if x < v. 1In view of ()5.4.i) and (15.4.ii),

all of these are bounded by qo(v)-+qu(x) = b. Then since k < x, the

truth value of (I y)5 b([qk(x)- =y] & (3 w)s y[¢k(x) = w]) is the same

as that of ¢k(x) < qk(x).

(25.5) Lemma (Blum). For each u there exists a v such

that fuv = fOO = f.

Proof. For each u there are only finitely many k with k < u, and in
particular there are only finitely many cpk with k < v ever spoiled for
gny x in KOO' Choose v > u s0 v bounds all x such that k < u and P

is spoiled for x in KOO'

Now KOO(-l) = Kuv(-l) = ¢; assurie X > O is the least number so
Koo(x) # Kuv(x)' Then clauses (b} in the definitions of Koo(x) and
Kuv(x) have identical truth values for each k; likewise for clauses
(c). But then if K (x) # Ky5(x), it must be that x > v and there
is ak <u so ¢k(x) < qk(x) and k ¢ Kuv(x -1) = xoo(x -1). But then
¢, is spoiled for x in Koo(x), and by choice of v, if k <u and @ is
époiled for x in KOO then v > x. 8ince we proved above that x > v, we
have a contradiction. Therefore, we have shown Kuv(x) = Koo(x) for

all x, and thus fuv = fOO' 3

(15.6) Lemma (Blum). If @, = f, then ¢, (x) > g, (x)

for almost all x.

vad
77

Proof. Suppose for contradiction that there are infinitely many

X = Xos XKypeeo such that ¢i(xj) < qi(xj). Since i is a fixed number
there are only finitely many k(::::sf;ith k < i; therefore, there
must be & number x which bounds all those y for which there exisis a
k < i such th;t Py is spoiled for y in KOO' It X, is the léast of
Xgs Kypeoo which exceeds this x, the conjunction of clauses (a), (b)
and (c) in the definition of £, = f is true for x = x , k = i and
for no smaller k. Thusi is spoiled for x,- But then @, (x) # £(x),

a contradiction.

(15.7) Lemma. There is an increasing Ez function h so for each

u, there is an index j for f such that

hqu(x) > ¢d(x)
for almost all x.

Proof. Recall that fuv(x) = f*(u,v,qo(v)d-qu(x),x) and f* € 32'
By the honesty of 9 and Q, there are £2 functions to and tt 80
the computation times of q and q are bounded by to(v,qo(v)) and

t‘(u,x,qu(x)) respectively; also, the computabion time of *(u,v,z,x)

is bounded by tf(u,v,z,x) and t, is in 52. Thus there is an 52

function t so t is increasing and t(u,v,qo(v)+ qu(x),x) bounds the
computation time of f*(u,v,qo(v)4-qu(x),x). et h(z) = t(z,z,2.2,2).
Given u, use Lemma (15.5) to find a v so Ty = fbo = £, and let }

be the index of fuv' Then

7 ¢

t(u:v:qo(v) +qu(X) X)) > ¢j(x)

for all x. But for large x, qu(x) exceeds all of x, u, v, and qo(v);

therefore for large X,

h(g (x)) = t(q (x),q,(x),2-q,(x),q,(x))
> t(u,v,q5(x) + q,(x),x)

> ¢J(x)

which completes Lemma (15.7).

Fay

Proof of Theorem (15.4) (concluded). By Lemma (15.6), if i is an

index for f then for almost all x,

9, (x) > q,(x)
By Lemma (15.4.1ii), for every d and almost all x,

0, (x) > {8 (x)

Since by hypothesis ¢, 4 > 2%, if h is any 52 function, d can be made

large enough s0

(a)
95,9(x) > gy hgg o b e gy 5h(x)

In particular, if h is the function of Lemma (15.5), use the lemma
to find an index j for f such that h(qi*l(x)) > ¢3(x) for almost all

x; then
o, (x) > ¢§°)(x)

for each ¢ and almost all x. This completes (15.3.iii). (15.3.i)
follows from Lemmas (15.6) and (15.4.iv); (15.3.ii) follows from
Lemmas (15.7) and (15.4.iv). Thus (15.3) is complete.

Theorem (15.3) is stronger than Blum's Super Speed-up Theorem
in two weys: first, as mentidned, we have shown that functions capa-
ble of being sped up lie low in®the £, hierarchy; for example in Es,
by taking g{x) = 2* in (15.35. Second, given an index i for f, we

have an index j for f so ¢i(x) > Qgc)(x) for every ¢ and almost all

L 45

-

gi)(x), a J, s0 &

Thus, as an example, let g(x) = 2° in Theorem (15.3). Then

x; Blum's theorem had a j, so ¢i(x) >0 > ¢g2)(x),... :
there exists an f so if i is any index for f, there exists another

index j for f such that all of the inequalities

QJ(x) <£og.¢i(x)
4’3(X) <lglog , (x)
o,(x) <ty o, (x)

hold for almost all x. Also, T € .ﬁs, and, in fact, if r is a non-
decreasing, recursive, unbounded function, no matter how slowly in-

creasing, then f can be computed in approximately fgr(x))(x) steps.

.

g

(1]

fe]

(3]

[4]

(s)

(el

{7]

f8]

(9]

[10]

(BRY/

[12]

[13]

[14]

REFERENCES
Ackermann, W., "Zum Hilbertschen Aufbau der reelen Zshlen"
Math. Annalen 99 (1928), pp. 118-133. :

Axt, P., "Iteration of primitive recursion” Notices Amer.
Math. Soc. 10, 1 (1963), Abstract 597-182.

, "Enumeration and the Grzegorczyk hierarchy"

Zeit. f. math. Logik u. Grundlagen d. Math. 9 (1963),

pp. 53-65.

Blum, M., "A méchine-independent theory of the complexity of
recursive functions" J. Assoc. Comp. Mach. 14, 2 (1987),
pp. 322-336.

Cleave, J. P., "A hierarchy of primitive recursive functions"
Zeit. f. math. Logik u. Grundlagen 4. Math. 2 (1963),
pp. 351-345.

Cobham, A., "The intrinsic computational complexity of functions”
Proc. 1954 Cong. for Logic, Methodology, and Philosophy of
Science, North-Holland, Amsterdam (1964).)

Davis, M., "Computability and Unsolvability" McGraw-Hill, Hew
York (1958).

Gddel, K., "jber die unentscheidbare Sdtze der Principia
Mathematica und verwandter Systeme I" Monatshefte f. Math.
u. Physik 37 (1931), pp. 349-360.

Grzegorczyk, A., "Some classes of recursive functions"
Rozprawy Matematyczne 4 (1953), pp. 1-45.

Hertmanis, J. and Stearns, R.E., "On the computational com-
plexity of algorithms" Trans. Amer. Math. Soc. 117, S
(1985), pp. 285-306.

Kleene, S.C., "General recursive functions of natural numbers"
Math. Annalen 112 (1936) pp. 727-742.

X nodanilan
. “i&Z%nuction to Metamathematics™ Van Nostrand,
Princeton, (1950).

, "Extension of an effectively generated class of
functions by enumeration" Colloquium Math. 8 (1958), pp. 67-78.
veyer, A. R., "Depth of nesting and the Grzegorczyk Hierarchy"
Notices Amer. Math. Soc. 12, 3 (19565), Abstract 622-56.

