THE LIVES THEY LIVED 2011

&he New Pork imes Magazine

December 25,2011

Ordinary People, Extraordinary Stories

A special section edited by Ira Glass and the staff of “This American Life.”

PLUS: Reality-TV Deaths, by John Jeremiah Sullivan Painting for Your Life, by Michael Paterniti
The Hollywood Know-'Em-All, by Maureen Dowd The Engineer of the Global Economy, by David Leonhardt The Late-Blooming Poet,
by Philip Levine The Tomboy Muse, by Cathy Horyn The Never-Ending Last Tango in Paris, by Susan Dominus and More.



‘A programmer’s need to explore, freely
and openly, is powerful.’

Dennis Ritchie, b. 1941
By Ellen Uliman

=1 B ]

hello, world

4

ello, world: those were
@ the words that appeared

on the screen once

you had programmed
and run the iconic first example in
the book “The C Programming
Language,”’ which Dennis Ritchie,
the creator of C, co-wrote with
Brian Kernighan. I remember that
slim volume’s revelatory power
when Iread it — its generous,
collegial style, more a talk with
presumed equals than a textbook.
I still have on my shelf the copy
I used, a first edition. The pencil
scratches seem to indicate I
was figuring out what the hell I
was doing.

I'was a self-taught programmer,

and it was through Ritchie that I

Ellen Ullman is the author of
“Close to the Machine’’ and ““The
Bug.”’ Her novel “‘By Blood”’

will be released in March 2012.

24

came to understand the layers of
software that worked beneath the
screens and printers and keyboards
and mice. The newness of C’s
conception — and the elegance of
it —was that the language was both
“high” and “low.” Higher-level
languages — like Cobol and Fortran
— kept you out of the innards of the
machine. “Lower-level” languages
—called “assembler” —worked

on only specific hardware. Closed
environments dominated the
computing world of the 1970s and
early ’80s. An operating system
written for a Hewlett-Packard
computer ran only on H.P.
computers; I.B.M. controlled its
software from chips up to the

user interfaces.

But C and the operating system
it was deeply intertwined with,
Unix, designed by Ken Thompson,
were made readily available.
Programmers were free to poke

around to see and directly
manipulate what was in the
computer’s memory. The entire
environment presumed you knew
what you were doing, or trying
todo. It let you fail spectacularly —
bring down the system with

one command — an annoying
but essential part of any great
experiment. The C/Unix system
invited collaboration across time
and space, what today we might
call “crowd sourcing,” except
that the members of this crowd —
researchers in government,
professors of computer science,
students in universities —

were deeply knowledgeable and
often brilliant.

Sadly, we are returning to the
“owned” past. Apple environments
run only on Apple hardware;
the Android system only on phones
approved by Google. Wireless
providers make deals with Apple,

Google and Microsoft, and these
corporate contracts determine
which specific equipment we can
buy. Worse yet, Apple and Google
are gatekeepers for the apps we
can use. In the wireless world, what
seems to be proliferating choice

is really taking us into another
digital archipelago.

But a programmer’s need to
explore, freely and openly, is
powerful. That is what I and others
like me understood the first time
we opened “The C Programming
Language”’ and were magnetically
drawn into the world Dennis
Ritchie created. We were closer
to the machines, yes, but also
interconnected. We had the sense
of being asked to join a heady
conversation in which what could
be said was limited by only
talent, energy and imagination.

That conversation has now
grown vast. We live in the midst of
an ever-widening circle of people
who understand technology
and are incorporating it into their
lives in an almost-interstitial
way. From the “greats” who were
Ritchie’s contemporaries to
those contributing today: software
engineers developing “open-
source’’ systems; programmers
writing apps for tiny start-ups;
designers of personal Web sites;
the millions “‘programming”’
their Facebook pages.

I believe they are experiencing
the delight I felt when Dennis
Ritchie let me peer into the
deeper recesses of computing,
the excitement of the
great collaboration he and Ken
Thompson began four decades ago.

In a sense, Ritchie has enabled
us to all become programmers. And
this alone should give us the power
to create our own digital future.

Hello, new world. ¢



